Solve 3 tanx+cotx=5cosecx.
Answers
Answered by
1
3tanx+cotx= 5cosecx
3sinx/cosx+cosx/sinx= 5/sinx
3sin2x+cos2x= 5cosx
3-3cos2x+cos2x= 5cosx
3-2cos2x=5cosx
2cos2x+5cosx-3= 0
2cos2x+6cosx-cosx-3=0
2cosx(cosx+3)+(-1)(cosx+3)=0
Cosx=-3,(1/2)
x=cos-1(-3),cos-1(1/2)
=60°,cos-1(-3)
3sinx/cosx+cosx/sinx= 5/sinx
3sin2x+cos2x= 5cosx
3-3cos2x+cos2x= 5cosx
3-2cos2x=5cosx
2cos2x+5cosx-3= 0
2cos2x+6cosx-cosx-3=0
2cosx(cosx+3)+(-1)(cosx+3)=0
Cosx=-3,(1/2)
x=cos-1(-3),cos-1(1/2)
=60°,cos-1(-3)
Answered by
0
Given Equation is 3 tan x + cot x = 5cosecx.
3(sinx/cosx) + (cosx/sinx) = 5(1/sinx)
On cross multiplication, we get
3sin^2x+cos^2x/cosxsinx = 5/sinx
3sin^2x + cos^2x = 5 * cosx sinx/sinx
3sin^2x + cos^2x = 5cosx
We know that sin^2x + cos^2x = 1 (or) sin^2x = 1-cos^2x.
3(1-cos^2x)+ cos^2x = 5cosx
3-3cos^2x+cos^2x=5cosx
3-2cos^2x=5cosx
2cos^2x+5cosx-3=0
2(cosx-1)(cosx+3)=0
2cosx-1 = 0 (or) cosx+3 = 0
cosx=1/2 (or)cosx = -3.
Hence cos x = 1/2
x = 60.
Hope this helps!
3(sinx/cosx) + (cosx/sinx) = 5(1/sinx)
On cross multiplication, we get
3sin^2x+cos^2x/cosxsinx = 5/sinx
3sin^2x + cos^2x = 5 * cosx sinx/sinx
3sin^2x + cos^2x = 5cosx
We know that sin^2x + cos^2x = 1 (or) sin^2x = 1-cos^2x.
3(1-cos^2x)+ cos^2x = 5cosx
3-3cos^2x+cos^2x=5cosx
3-2cos^2x=5cosx
2cos^2x+5cosx-3=0
2(cosx-1)(cosx+3)=0
2cosx-1 = 0 (or) cosx+3 = 0
cosx=1/2 (or)cosx = -3.
Hence cos x = 1/2
x = 60.
Hope this helps!
Similar questions
World Languages,
8 months ago
Social Sciences,
8 months ago
Physics,
1 year ago
Chemistry,
1 year ago