Math, asked by viji105, 1 year ago

solve 3^x+1/3y=10/3

answer x=±1​

Answers

Answered by MaheswariS
4

\textbf{Given:}

3^x+\dfrac{1}{3^x}=\dfrac{10}{3}

\textbf{To find:}\;x

3^x+\dfrac{1}{3^x}=\dfrac{10}{3}

\text{Take }\;t=3^x

t+\dfrac{1}{t}=\dfrac{10}{3}

\dfrac{t^2+1}{t}=\dfrac{10}{3}

3(t^2+1)=10t

3t^2+3=10t

3t^2-10t+3=0

3t^2-9t-t+3=0

3t(t-3)-1(t-3)=0

(3t-1)(t-3)=0

t=3,\frac{1}{3}

\text{(i)when t=3}

\implies\;3^x=3

\implies\;3^x=3^1

\implies\bf\;x=1

\text{(ii)when t=$\frac{1}{3}$}

\implies\;3^x=\frac{1}{3}

\implies\;3^x=3^{-1}

\implies\bf\;x=-1

\therefore\boxed{\bf\textbf{The solution is}\;x={\pm}1}

Find more:

2(x^2+1/x^2 )-9(x+1/x)+14=0 solve

https://brainly.in/question/1606763

Answered by amrithaksrinivasan
0

±1 is the required anwer

Similar questions