Math, asked by varzaan, 5 months ago

Solve:

3/x + 12/y =5/2 ; 6/X +8/y=1​

Answers

Answered by Anonymous
1

Solution:-

We have

 \rm \implies \:  \dfrac{3}{x}  +  \dfrac{12}{y}  =  \dfrac{5}{2}  \:  \:  \:  \:  \:  \: ...(i)eq

 \rm \implies \:  \dfrac{6}{x}  +  \dfrac{8}{y}  = 1 \:  \:  \:  \:  \:  \: ...(ii)eq

Now let

 \rm \implies \:  \dfrac{1}{x}  = u \: \:  and \:  \:  \dfrac{1}{y}  = v

We get

 \rm \implies \: 3u + 12v =  \dfrac{5}{2}  \:  \: ....(i)eq

 \rm \implies \: 6u + 24v = 5 \:  \:  \: ....(i)eq

 \rm \implies \: 6u + 8v = 1 \:  \:  \:  \: ...(ii)eq

Now subtract (ii) from (i) eq

 \rm \implies \: 6u + 24v - 6u - 8v = 5 - 1

 \rm \implies \: 24v - 8v = 4

 \rm \implies \: 16v = 4 \implies \: v =  \dfrac{1}{4}

Now put the value of v on (ii)eq

 \rm \implies \: 6u + 8v = 1 \:  \:  \:  \: ...(ii)eq

 \rm \implies \: 6u + 8 \times  \dfrac{1}{4}  = 1

 \rm \implies \: 6u + 2 = 1

 \rm \implies \: 6u =  - 1

 \rm \implies \: u =  \dfrac{ - 1}{6}

Now put the value of x and y on

\rm \implies \:  \dfrac{1}{x}  = u \: \:  and \:  \:  \dfrac{1}{y}  = v

\rm \implies \:  \dfrac{1}{x}  =  \dfrac{ - 1}{6} \: \:  and \:  \:  \dfrac{1}{y}  =  \dfrac{1}{4}

So we get

 \rm \implies \: x =  - 6 \:  \: and \: y = 4

Similar questions