Math, asked by nitas1985123, 1 month ago

SOLVE
3/x+2 - 1/x+1 = 2/x+3​

Answers

Answered by sherusha
3

hlo buddy

here is your answer....

Attachments:
Answered by Flaunt
21

\sf \large=  >  \dfrac{3}{x + 2}  -  \dfrac{1}{x + 1}  =  \dfrac{2}{x + 3}

Now, taking LCM to hand side

\sf \large=  >  \dfrac{3(x + 1) - 1(x + 2)}{( x+ 2)(x + 1)}  =  \dfrac{2}{x + 3}

\sf \large=  >  \dfrac{3x + 3 - x - 2}{x(x + 1) + 2(x + 1)}  =  \dfrac{2}{x + 3}

\sf \large=  >  \dfrac{3x - x + 3 - 2}{ {x}^{2}  + x + 2x + 2}  =  \dfrac{2}{x + 3}

\sf \large=  >  \dfrac{2x + 1}{ {x}^{2} + 3x + 2 }  =  \dfrac{2}{x + 3}

Now,cross multiply to both sides:

\sf \large=  > (2x + 1)(x + 3) = 2( {x}^{2}  + 3x + 2)

\sf \large=  > 2x(x + 3) + 1(x + 3) = 2 {x}^{2}  + 6x + 4

\sf \large=  > { \cancel{2 {x}^{2}  + 6x }}+ x + 3 ={ \cancel{ 2 {x}^{2}  + 6x }}+ 4

Now,2x²+6 lies on both sides so,it automatically gets cancelled

\sf \large=  > x + 3 = 4

\sf \large=  > x = 4 - 3

\sf \large=  >  \bold{\red{x = 1}}

Check:

\sf \large=  >  \dfrac{3}{x + 2}  -  \dfrac{1}{x + 1}  =  \dfrac{2}{x + 3}

Taking LHS

\sf \large=  >  \dfrac{3}{1 + 2}  -  \dfrac{1}{1 + 1}

\sf \large=  >  \dfrac{3}{3}  -  \dfrac{1}{2}

\sf \large=  >  \dfrac{6 - 3}{6}  =  \dfrac{3}{6}  =  \dfrac{1}{2}

Taking RHS

\sf \large=  >  \dfrac{2}{1 + 3}  =  \dfrac{2}{4}  =  \dfrac{1}{2}

Now,LHS =RHS (verified)

Similar questions