Math, asked by nitas1985123, 2 months ago

SOLVE
3/x+2 - 1/x+1 = 2/x+3​​

Answers

Answered by Anonymous
2

GIVEN :-

 \\  \sf \:  \dfrac{3}{x + 2}  -  \dfrac{1}{x + 1}  =  \dfrac{2}{x + 3} \\   \\

TO FIND :-

  • Value of x.

 \\

SOLUTION :-

 \\   \implies\sf \:  \dfrac{3}{x + 2}  -  \dfrac{1}{x + 1}  =  \dfrac{2}{x + 3}  \\  \\  \\  \implies\sf \:  \dfrac{3(x + 1) - 1(x + 2)}{(x + 2)(x + 1)}  =  \dfrac{2}{x + 3}  \\  \\  \\  \implies \sf \:  \dfrac{3x + 3 - x - 2}{x(x + 1) + 2(x + 1)}  =  \dfrac{2}{x + 3}  \\  \\  \\  \implies \sf \:  \dfrac{2x + 1}{ {x}^{2} + x + 2x + 2 }  =  \dfrac{2}{x + 3}  \\  \\  \\  \implies \sf \:  \dfrac{2x + 1}{ {x}^{2}  + 3x + 2}  =  \dfrac{2}{x + 3}  \\  \\

 \implies  \sf \: (2x + 1)(x + 3) = 2( {x}^{2}  + 3x + 2) \\  \\  \\ \implies  \sf \: 2x(x + 3) + 1(x + 3) = 2 {x}^{2}  + 6x + 4 \\  \\  \\  \implies \sf \:  \cancel{2 {x}^{2} } + 6x + x + 3 =  \cancel{2 {x}^{2}}  + 6x + 4  \\  \\  \\  \implies \sf \: 7x + 3 = 6x + 4 \\  \\  \\  \implies \sf \: 7x - 6x = 4 - 3 \\  \\   \\  \implies \boxed{ \mathfrak{x = 1}} \\  \\

VERIFICATION :-

 \\   \sf \:  \dfrac{3}{x + 2}  -  \dfrac{1}{x + 1}  =  \dfrac{2}{x + 3}  \\  \\   \\ \sf \:  \dfrac{3}{1 + 2}  -  \dfrac{1}{1 + 1}  =  \dfrac{2}{1 + 3}  \\  \\  \\  \sf \:  \cancel \dfrac{3}{3}  -  \dfrac{1}{2}  =  \cancel \dfrac{2}{4}  \\  \\  \\  \sf \: 1 -  \dfrac{1}{2}  =  \dfrac{1}{2}  \\  \\  \\  \sf \:  \dfrac{1}{2}  =  \dfrac{1}{2}  \:  \:  \:  \:  \: (verified )

Similar questions