Math, asked by khushi246839, 1 year ago

solve: 30/root 20+ root 5​

Answers

Answered by TheCommando
58

 \bold{\dfrac{30}{\sqrt{20} + \sqrt{5}}}

Rationalizing the denominator

 = \dfrac{30}{\sqrt{20} + \sqrt{5}}

 = \dfrac{30}{\sqrt{20} + \sqrt{5}} \times \dfrac{\sqrt{20} - \sqrt{5}}{\sqrt{20} - \sqrt{5}}

 = \dfrac{30(\sqrt{20} - \sqrt{5})}{{(\sqrt{20})}^{2} - {(\sqrt{5})}^{2}}

 = \dfrac{30(\sqrt{20} - \sqrt{5})}{15}

 = 2(\sqrt{20} - \sqrt{5})

 = 4\sqrt{5} - 2\sqrt{5}

 \boxed{= 2\sqrt{5}}

___________________________________________

 \bold{\dfrac{30}{\sqrt{20}} + \sqrt{5}}

 = \dfrac{30}{2\sqrt{5}}+\sqrt{5}

By taking LCM

 = \dfrac{30}{2\sqrt{5}}+\dfrac{\sqrt{5}(2\sqrt{5})}{2\sqrt{5}}

 = \dfrac{30 + 10}{2\sqrt{5}}

 = \dfrac{40}{2\sqrt{5}}

 \boxed{= \dfrac{20}{\sqrt{5}}}


Anonymous: nice answer ⭐
TheCommando: :)
AbhijithPrakash: Great!!
TheCommando: Thank you ☺☺
Answered by Anonymous
35

\mathfrak{\large{\underline{\underline{Correct \: Question:-}}}}

\sf{Solve \: \dfrac{30}{ \sqrt{20} +  \sqrt{5} } }

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{ \dfrac{30}{ \sqrt{20} +  \sqrt{5} } = 2 \sqrt{5} }}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

 \dfrac{30}{ \sqrt{20} +  \sqrt{5} }

To solve it first we need to rationalise the denominator.

To rationalise denominator first we have to know what is its rationalising factor.

The rationalising factor of √20 + √5 is √20 - √5. So, multiply both denominator and denom8nator with rationalising factor.

 =  \dfrac{30}{ \sqrt{20} +  \sqrt{5} } \times  \dfrac{ \sqrt{20} -  \sqrt{5} }{ \sqrt{20} -  \sqrt{5} }

 =  \dfrac{30( \sqrt{20} -  \sqrt{5})}{ {( \sqrt{20})}^{2} -  {( \sqrt{5})}^{2} }

[In denominator (x + y)(x - y) = x² - y² and here x = √20 and y = √5]

 =  \dfrac{30( \sqrt{4 \times 5} -  \sqrt{5} }{20 - 5}

[Here √20 can be written as √4 * √5 ]

 =  \dfrac{30(2 \sqrt{5} -  \sqrt{5})}{15}

[Here in numerator √4 is written as 2 because √4 = 2]

 =2(2 \sqrt{5} -  \sqrt{5})

 = 4 \sqrt{5} - 2 \sqrt{5}

 = 2 \sqrt{5}

\boxed{\bf{ \dfrac{30}{ \sqrt{20} +  \sqrt{5} } = 2 \sqrt{5} }}

\mathfrak{\large{\underline{\underline{Identity \: Used:-}}}}

(x + y)(x - y) = x² - y²

\mathfrak{\large{\underline{\underline{Extra \: Information:-}}}}

What is rationalising factor ?

If the product of two irrational number is rational number then each of the other is rationalising factor.

• To rationalise the denomiantor of \sf{ \dfrac{1}{ \sqrt{a} + b} } , we multiply this by \sf{ \dfrac{ \sqrt{a} - b}{ \sqrt{a} - b} } , where a, b are integers.


AbhijithPrakash: Awesome!!
Anonymous: :-)
Similar questions