Math, asked by Sivababu1183, 11 months ago

Solve 36/11= 3+1/(x+1/(y+1/z))

Answers

Answered by ammy111000
0
1.05=4x i
 \\  \\  {2}^{2}
Answered by Qwdelhi
0

If \frac{36}{11}= 3 + \frac{1}{x + \frac{1}{y+\frac{1}{z} } } , where x, y, and z are natural numbers, then what is

(x+ y+ z) equal to?

x+ y+ z = 6

Given:

\frac{36}{11}= 3 + \frac{1}{x + \frac{1}{y+\frac{1}{z} } }

To Find:

The value of x+ y+ z

Solution:

\frac{36}{11}= 3 + \frac{1}{x + \frac{1}{y+\frac{1}{z} } }

\frac{36}{11}- 3 = \frac{1}{x+\frac{1}{y+\frac{1}{z} } }

\frac{36-33}{11} = \frac{1}{x+\frac{1}{y+\frac{1}{z} } }  \\\\\frac{3}{11} =  \frac{1}{x+\frac{1}{y+\frac{1}{z} } }

\frac{1}{x+\frac{1}{y+\frac{1}{z} } }   = \frac{1}{\frac{11}{3} } \\\\ \frac{1}{x+\frac{1}{y+\frac{1}{z} } }  =  \frac{1}{3+\frac{2}{3}  }\\\\ \frac{1}{x+\frac{1}{y+\frac{1}{z} } } =  \frac{1}{3+\frac{1}{\frac{3}{2} } } \\\\ \frac{1}{x+\frac{1}{y+\frac{1}{z} } }  =   \frac{1}{3+\frac{1}{1+\frac{1}{ 2} } }

On comparing LHS and RHS

x= 3, y = 1 and z=2.

⇒x+y+z = 3+1+2 = 6

∴x+ y+ z = 6

#SPJ3

Learn More

1) If x+ y +z=9 and xy +yz +zx=26 find x^2+y^2+z^2.

Link: https://brainly.in/question/1536911?msp_srt_exp=6

2) Find x, y, and z such that x³+y³+z³=k, for each k from 1 to 100.

Link: https://brainly.in/question/16695272?msp_srt_exp=6

Similar questions