Math, asked by shivansh12105, 3 months ago

solve.. .. .. .. .. .. .. .. .. ..​

Attachments:

Answers

Answered by shadowsabers03
7

Correct Question:-

Evaluate \displaystyle\int\dfrac{\sin^{-1}x}{(1-x^2)^{\frac{3}{2}}}\ dx.

Solution:-

Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{\sin^{-1}x}{(1-x^2)^{\frac{3}{2}}}\ dx

Substitute,

\longrightarrow \theta=\sin^{-1}x

\longrightarrow x=\sin\theta

\longrightarrow dx=\cos\theta\ d\theta

Also,

\longrightarrow\cos\theta=\sqrt{1-x^2}

\longrightarrow\tan\theta=\dfrac{x}{\sqrt{1-x^2}}

Then the integral becomes,

\displaystyle\longrightarrow I=\int\dfrac{\theta}{(1-\sin^2\theta)^{\frac{3}{2}}}\ \cos\theta\ d\theta

\displaystyle\longrightarrow I=\int\dfrac{\theta}{(\cos^2\theta)^{\frac{3}{2}}}\ \cos\theta\ d\theta

\displaystyle\longrightarrow I=\int\dfrac{\theta}{\cos^3\theta}\ \cos\theta\ d\theta

\displaystyle\longrightarrow I=\int\dfrac{\theta}{\cos^2\theta}\ d\theta

\displaystyle\longrightarrow I=\int\theta\,\sec^2\theta\ d\theta

Performing integration by parts,

\displaystyle\longrightarrow I=\theta\tan\theta-\int\tan\theta\ d\theta

\displaystyle\longrightarrow I=\theta\tan\theta+\log|\cos\theta|+C

Undoing substitutions for \theta,\ \tan\theta and \cos\theta, we get,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{x\sin^{-1}x}{\sqrt{1-x^2}}+\log\sqrt{1-x^2}+C}}


amansharma264: Excellent
Similar questions