Solve: (3a²b/2a²c)x(3a²/2b²)÷(27a²/8b²)²
Answers
The factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).
Step-by-step explanation:
We have,
a^2-4b^2+a^3-8b^3-(a-2b)^2
To factorise the given expression=?
=(a^2-4b^2)+(a^3-8b^3)-(a-2b)^2
=[a^2-(2b)^2]+[a^3-(2b)^3]-(a-2b)^2
=(a+2b)(a-2b)+(a-2b)(a^{2}+2ab+4b^{2})-(a-2b)^2
Using identities,
a^{2}-b^{2} =(a+b)(a-b) and
a^{3}-b^{3} =(a-b)(a^{2}+ab+b^{2})
Taking (a-2b) as common, we get
=(a-2b)[(a+2b)+(a^{2}+2ab+4b^{2})-(a-2b)]
=(a-2b)(a+2b+a^{2}+2ab+4b^{2}-a+2b)
=(a-2b)(4b+a^{2}+2ab+4b^{2})
=(a-2b)(4b+a^{2}+2ab+4b^{2})
Hence, the factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).
The factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).
Step-by-step explanation:
We have,
a^2-4b^2+a^3-8b^3-(a-2b)^2
To factorise the given expression=?
=(a^2-4b^2)+(a^3-8b^3)-(a-2b)^2
=[a^2-(2b)^2]+[a^3-(2b)^3]-(a-2b)^2
=(a+2b)(a-2b)+(a-2b)(a^{2}+2ab+4b^{2})-(a-2b)^2
Using identities,
a^{2}-b^{2} =(a+b)(a-b) and
a^{3}-b^{3} =(a-b)(a^{2}+ab+b^{2})
Taking (a-2b) as common, we get
=(a-2b)[(a+2b)+(a^{2}+2ab+4b^{2})-(a-2b)]
=(a-2b)(a+2b+a^{2}+2ab+4b^{2}-a+2b)
=(a-2b)(4b+a^{2}+2ab+4b^{2})
=(a-2b)(4b+a^{2}+2ab+4b^{2})
Hence, the factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).