Math, asked by kishu636, 11 months ago

solve:- 3x^2 = 2x -8
from quadratic equation​

Answers

Answered by rajsingh24
78

\huge\bold\red{ANSWER:-}

 3x {}^{2}  = 2x - 8 \\ .°. 3x {}^{2}  - 2x + 8 = 0 \\ using \: \:  quadratic \: equation \\ x =  \frac{ - ( - 2)± \sqrt{( - 2) {}^{2} - 4 \times 3 \times 8 } }{2 \times 3}  \\ x =  \frac{2± \sqrt{4 - 96} }{6} \\ x =  \frac{2± \sqrt{ - 92} }{6}

THE SQUARE ROOT OF A NEGATIVE NUMBER DOES NOT EXIST IN THE SET OF REAL NUMBERS.

.°.X € R.

\huge\bold\red{THANKS.}

Answered by Anonymous
4

Answer:

\large\boxed{\sf{x =  \frac{1 +  \sqrt{23} \iota}{3} }}

Step-by-step explanation:

It's given a quadratic equation,

 \sf{3 {x}^{2}  = 2x - 8  }

Moving all the terms on LHS,

  \sf{=  > 3 {x}^{2}  - 2x + 8 = 0} \\  \\   \sf{=  >  \frac{3 {x}^{2} - 2x + 8 }{3}  =  \frac{0}{3} } \\  \\  \sf{ =  >  {x}^{2}  - 2 \times x \times  \frac{1}{3}  +  \frac{8}{3}  = 0 }\\  \\   \sf{=  >  {x}^{2}  - 2 \times x \times  \frac{1}{3}  +  {( \frac{1}{3} )}^{2}  +  \frac{8}{3}  -  {( \frac{1}{3} )}^{2}  = 0 }\\  \\  \sf{ =  >  {(x -  \frac{1}{3} )}^{2}  +  \frac{8 \times 3}{3 \times 3}  -  \frac{1}{9}  = 0 }\\  \\ \sf{  =  >  {(x -  \frac{1}{3}) }^{2}  +  \frac{24 - 1}{9}  = 0} \\  \\   \sf{=  >  {(x -  \frac{1}{3} )}^{2}  +  \frac{23}{9}  = 0} \\  \\ \sf{  =  >  {(x -  \frac{1}{ 3}) }^{2}  =  -  \frac{23}{9} } \\  \\  \sf{ =  > x -  \frac{1}{3}  =  \sqrt{ -  \frac{23}{9} }}  \\  \\  \sf{ =  > x -  \frac{1}{3}  =  \sqrt{ \frac{23}{9} }  \times  \sqrt{  - 1} } \\  \\   \sf{=  > x -  \frac{1}{3}  =   \frac{ \sqrt{23}     \iota}{3}}  \\  \\  \sf{ =  > x =  \frac{1}{3}  +  \frac{ \sqrt{23}  \iota}{3}}  \\  \\  \sf{ =  > x =  \frac{1 +  \sqrt{23}  \iota}{3}  \:  \:  \:  \:  \: ( \iota=  iota)}

Hence, the value of x is complex number.

Similar questions