Math, asked by karthikanand1024, 10 days ago

solve 3x+3y-z=11,2x-y+2z=9,4x+3y+2z=25 by cramer's rule​

Answers

Answered by Anonymous
5

Answer:

✵\textbf\red{Given:}Given: ✵

\mathsf{x+y+z=6}x+y+z=6

\mathsf{3x+3y+z=12}3x+3y+z=12

\mathsf{2x+3y+2z=14}2x+3y+2z=14

\textbf\red{To find:}To find:

\textsf{Solution\: of \:the\: given\: system \:of\: equations \:by \:Cramer's \:rule}Solutionof thegivensystem ofequations by Cramer’s rule

\textbf\red{Solution:}Solution:

\begin{gathered}\begin{gathered}\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\3&3&1\\2&3&2\end{array}\right|}\end{gathered} \end{gathered}

△=

1

3

2

1

3

3

1

1

2

\mathsf{\triangle=1(6-3)-1(6-2)+1(9-6)}△=1(6−3)−1(6−2)+1(9−6)

\mathsf{\triangle=3-4+3}△=3−4+3

\mathsf{\triangle=2}△=2

\begin{gathered}⟹ \begin{gathered}\mathsf{{\triangle}_x=\left|\begin{array}{ccc}6&1&1\\12&3&1\\14&3&2\end{array}\right|}\end{gathered} \end{gathered}

x

=

6

12

14

1

3

3

1

1

2

\mathsf{{\triangle}_x=6(6-3)-1(24-14)+1(36-42)}△

x

=6(6−3)−1(24−14)+1(36−42)

\mathsf{{\triangle}_x=18-10-6}△

x

=18−10−6

\mathsf{{\triangle}_x=2}△

x

=2

\begin{gathered}\begin{gathered}\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&6&1\\3&12&1\\2&14&2\end{array}\right|}\end{gathered} \end{gathered}

y

=

1

3

2

6

12

14

1

1

2

\mathsf{{\triangle}_y=1(24-14)-6(6-2)+1(42-24)}△

y

=1(24−14)−6(6−2)+1(42−24)

\mathsf{{\triangle}_y=10-24+18}△

y

=10−24+18

\mathsf{{\triangle}_y=4}△

y

=4

\mathsf{{\triangle}_z=1(42-36)-1(42-24)+6(9-6)}△

z

=1(42−36)−1(42−24)+6(9−6)

\mathsf{{\triangle}_z=6-18+18}△

z

=6−18+18

\mathsf{{\triangle}_z=6}△

z

=6

\textsf{By Cramer's rule}By Cramer’s rule

\mathsf{x=\dfrac{\triangle_x}{\triangle}}x=

x

\mathsf{x=\dfrac{2}{2}=1}x=

2

2

=1

\mathsf{y=\dfrac{\triangle_y}{\triangle}}y=

y

→\mathsf{y=\dfrac{4}{2}=2}→y=

2

4

=2

→\mathsf{z=\dfrac{\triangle_z}{\triangle}}→z=

z

→\mathsf{z=\dfrac{6}{2}=3}→z=

2

6

=3

➪\therefore\textsf{The solution is x=1, y=2 and z=3}∴The solution is x=1, y=2 and z=3

Similar questions