Math, asked by lovepreetbanger6, 11 months ago

solve 3x/4-2x+5/3=5/2 and check​

Answers

Answered by Harshita610
180

Step-by-step explanation:

 \frac{3x}{4 - 2x}  -  \frac{2x + 5}{3}  =  \frac{5}{2 }

 \frac{3x }{4 - 2x}  =  \frac{5}{2}  -  \frac{5}{3}

 \frac{3x}{4 - 2x}  =  \frac{5}{6}

18x = 5(4 - 2x)

18x = 20 - 10x

18x + 10x = 20

38x = 20

x =  \frac{20}{38}

x =  \frac{10}{16}

x =  \frac{5}{8}

Thank you so much ^_^

Please ♥like♥ and Mark as

brainliest answer

Solved &, checked ☑

Answered by payalchatterje
7

Answer:

Required value of x is 2 \frac{7}{24}

Step-by-step explanation:

Given,

 \frac{3x}{4}  + 2x +  \frac{5}{3}  =  \frac{5}{2}

Separating variable and constant part,

 \frac{3x}{4}  + 2x =  \frac{5}{2}  -  \frac{5}{3}

Adding all variable parts by fraction addition method,

 \frac{3x + 8x}{4}  =  \frac{5}{2}  -  \frac{5}{3}

 \frac{11x}{4}  =  \frac{5}{2}  -  \frac{5}{3}

 \frac{11x}{4}  = 5 \times ( \frac{3 - 2}{6} ) = 5 \times  \frac{1}{6}

 \frac{11x}{4}  =  \frac{5}{6}

x =  \frac{5}{6}  \times  \frac{11}{4}  =  \frac{55}{24}  = 2 \frac{7}{24}

Required value of x is 2 \frac{7}{24}

Checking part:

Putting x=2 \frac{7}{24}

in

\frac{3x}{4}  + 2x +  \frac{5}{3}

So,

\frac{3}{4}   \times  \frac{55}{24} + 2 \times  \frac{55}{24} +  \frac{5}{3}  = \frac{5}{2}

Similar questions