Math, asked by farhan20147, 10 months ago

solve 3x-5y=5 and 9x-2y=7 by substitution method​

Answers

Answered by saranshkhandelwal
1

Answer:

The ans is in above photo step by step

Attachments:
Answered by amitkumar44481
7

SolutioN :

We have, Pair of Linear Equation.

 \tt \dagger \:  \:  \:  \:  \: 3x - 5y = 5. \:  \:  \:  \:  \:  - (1)

 \tt \dagger \:  \:  \:  \:  \: 9x - 2y = 7. \:  \:  \:  \:  \:  - (2)

Now, Let's solve Equation by Substitution method.

Taking Equation ( 1 )

 \tt  : \implies 3x - 5y = 5.

 \tt  : \implies 3x  = 5 + 5y.

 \tt  : \implies x  =  \dfrac{ 5 + 5y}{3}.  \:  \:  \:  \:  \:  - (3)

Now, Putting the value of x in Equation ( 2 ) We get.

 \tt  : \implies 9x - 2y = 7.

 \tt  : \implies 9 \times \dfrac{5 + 5y}{3}  - 2y = 7.

 \tt  : \implies  \cancel9 \times \dfrac{5 + 5y}{ \cancel3}  - 2y = 7.

 \tt  : \implies 3 \times(5  + 5y)  - 2y = 7.

 \tt  : \implies 15 + 15y - 2y = 7.

 \tt  : \implies 13y =  - 8.

 \tt  : \implies y =  -   \dfrac{8}{13}

Now, Putting the value of y = -8/13. in Equation ( 3 )

 \tt  : \implies x  =  \dfrac{ 5 + 5y}{3}

 \tt  : \implies x  =  \dfrac{ 5 + 5\Big( -  \dfrac{8}{13} \Big)}{3}.

 \tt  : \implies x  =   \dfrac{ \dfrac{65- 40}{13} }{ \dfrac{3}{1} }

 \tt  : \implies x  =    \dfrac{25}{13}  \times  \dfrac{1}{3}

 \tt  : \implies x  =   \dfrac{ 2 5}{39}

Therefore,the value of x = 25 /39 and y = - 8/13.

Similar questions