Math, asked by resmisanju, 6 months ago

Solve 3x+ 5y-7z=13, 4x + y - 12z = 6, 2x+9y-3z=20 using matrix determinants​

Answers

Answered by samson283
1

To solve :

               3x+5y-7z=13

                4x+y-12z=6

                 2x+9y-3z=20   Using determinant

solution:

 The matrixes from the given equations

 \left[\begin{array}{ccc}3&5&-7\\4&1&-12\\2&9&-3\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}13\\6\\20\end{array}\right]

AX=B

where,

         A=\left[\begin{array}{ccc}3&5&-7\\4&1&-12\\2&9&-3\end{array}\right] ;B=\left[\begin{array}{ccc}13\\6\\20\end{array}\right] ;X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]

AX=B

X=\frac{B}{A}

X=BA^{-1}

To find A^{-1};

                |A|=+3(-3+108)-5(-12+24)-7(32-2)\\|A|=315-60-210\\|A|=45\neq 0

CofactorA=\left[\begin{array}{ccc}+(-3+108)&-(-12+24)&+(36-2)\\-(-15+63)&+(-9+14)&-(27-10)\\+(-60+7)&-(-36+28)&+(3-20)\end{array}\right]      

   CofactorA=\left[\begin{array}{ccc}105&-12&34\\-48&5&-17\\-53&8&-17\end{array}\right]

          adjA=\left[\begin{array}{ccc}105&-48&-53\\-12&5&8\\34&-17&-17\end{array}\right]

           ∴ A^{-1}=\frac{1}{|A|}(adjA)

       A^{-1}=\frac{1}{45} \left[\begin{array}{ccc}105&-48&-53\\-12&5&8\\34&-17&-17\end{array}\right]

now,

      X=BA^{-1}

         

               X=\left[\begin{array}{ccc}13\\6\\20\end{array}\right] \left[\begin{array}{ccc}105&-48&-53\\-12&5&8\\34&-17&-17\end{array}\right]\frac{1}{45}

        X=\left[\begin{array}{ccc}1365-288-1060\\-156+30+160\\442-102-340\end{array}\right]\frac{1}{45}

                   X=\left[\begin{array}{ccc}17\\34\\-18\end{array}\right]\frac{1}{45}

                \left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}17\\34\\-18\end{array}\right]\frac{1}{45}

                \left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}\frac{17}{45} \\\frac{34}{45} \\-\frac{18}{45} \end{array}\right]

 Answer:  x=\frac{17}{45} ;y=\frac{34}{45} ;z=-\frac{18}{45}

 

             

Similar questions