Math, asked by Lathathangaraj, 1 month ago

solve √3x2 +x+√3=0 from complex numbers and quadratic equation ​

Answers

Answered by GraceS
5

\sf\huge\bold{Answer:}

Given :

\sf:⟶ \sqrt{3}  {x}^{2}  + x +  \sqrt{3}  = 0

To find :

Value of x

Solution :

\fbox\purple{Solving Quadratic Equation Using discriminant method }

① Getting values of a, b and c by comparing given equation with general form.

\sf:⟶ \sqrt{3}  {x}^{2}  + x +  \sqrt{3}  = 0 \\

\sf:⟶ax {}^{2} +  bx + c = 0

we get,

a=3

b=1

c=3

② Finding discriminant

:⟶D=b²-4ac

:⟶D=1²-4×√3×√3

:⟶D=1-4×3

:⟶D=1-12

:⟶D= -11

③ Finding roots

\sf:⟶x =  \frac{ - b± \sqrt{D} }{2a} \\

\sf:⟶x =  \frac{ - 1 ± \sqrt{-11} }{2×√3} \\

\sf:⟶x =  \frac{ - 1± \sqrt{-1×11} }{2√3}\\

-1 = i

(iota) . This symbol is used for representation of complex numbers.

\sf:⟶x =  \frac{ - 1± \sqrt{11} i}{2√3}\\

Rationalising denominator

\sf:⟶x =  \frac{ - 1± \sqrt{11}i }{2 \sqrt{3} } \times  \frac{2 \sqrt{3} }{2 \sqrt{3} }  \\

\sf:⟶x =  \frac{2 \sqrt{3}( - 1± \sqrt{11}i )}{2 \sqrt{3}× 2 \sqrt{3}  } \\

:⟶ \sf \:x =   \frac{ - 2 \sqrt{3}±( 2)  \sqrt{11} \times  \sqrt{3}i  }{2 \times 2 \times  \sqrt{3 }  \times  \sqrt{3} }  \\

\sf:⟶x =  \frac{ - 2 \sqrt{3} ±2 \sqrt{33}i }{4 \times 3}  \\

\sf:⟶x =  \frac{ - 2 \sqrt{3} ±2 \sqrt{33}i }{12}  \\

\sf:⟶x =  \frac{  2 (-\sqrt{3} ± \sqrt{33}i) }{2 \times 6}  \\

\sf:⟶x =  \frac{   -\sqrt{3} ± \sqrt{33}i}{  6}  \\

\sf\huge{x =  \frac{   -\sqrt{3} ± \sqrt{33}i}{ 6} } \\

or

\huge\purple{x =  \frac{   -\sqrt{3} + \sqrt{33}i}{  6} } \\

and

\huge\purple{x =  \frac{   -\sqrt{3} - \sqrt{33}i}{  6}}  \\

Answered by ajr111
10

Answer:

\mathbf{x = \dfrac{-1 \pm i\sqrt{11}}{2\sqrt3}}

Step-by-step explanation:

Given :

\mathrm{\sqrt3x^2 + x + \sqrt3}

To find :

Solution of the given equation

Solution :

We know that if ax² + bx + c = 0 is a quadratic equation, then, Solutions of it x are :

\boxed{\mathrm{x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}}}

Here, a = √3 ; b = 1 ; c = √3

\implies \mathrm{x = \dfrac{-1 \pm \sqrt{1^2 - 4(\sqrt3)(\sqrt3)}}{2\sqrt3}}

\implies \mathrm{x = \dfrac{-1 \pm \sqrt{1 - 4(3)}}{2\sqrt3}}

\implies \mathrm{x = \dfrac{-1 \pm \sqrt{-11}}{2\sqrt3}}

\implies \mathrm{x = \dfrac{-1 \pm i\sqrt{11}}{2\sqrt3}}

Where, i = √-1.

So,

\therefore \underline{\boxed{\mathrm{x = \dfrac{-1 \pm i\sqrt{11}}{2\sqrt3}}}}

This is the solution of the given equation.

Hope it helps!!

Similar questions