Math, asked by anithapudipatla2003, 2 months ago

solve (3xy-2aysquare) dx+(xsquare -2axy) dy=0​

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

 \rm \: (3xy - 2a {y}^{2} )dx + ( {x}^{2}  - 2axy)dy = 0

\rm :  \implies \: (3xy - 2a {y}^{2} )dx  =  -  ( {x}^{2}  - 2axy)dy

\rm :  \implies \:  \rm \: (3xy - 2a {y}^{2} )dx  =  (  2axy -  {x}^{2} )dy

\rm :  \implies \: \dfrac{dy}{dx}  \:  =  \: \dfrac{3xy - 2a {y}^{2}}{2axy -  {x}^{2}}

Since, the degree of each term is same, therefore its a homogeneous differential equation.

To solve such equation,

\rm :  \implies \: Put \: y \:  =  \: vx

So, equation can be rewritten as

\rm :  \implies \: \dfrac{d}{dx}(vx) =  \dfrac{3x(vx) - 2a {v}^{2} {x}^{2}  }{2ax(vx) -  {x}^{2} }

\rm :  \implies \: v \:  +  \: x\dfrac{dv}{dx}  = \dfrac{3v - 2a {v}^{2} }{2av - 1}

\rm :  \implies \:  \:   \: x\dfrac{dv}{dx}  = \dfrac{3v - 2a {v}^{2} }{2av - 1}  - v

\rm :  \implies \:   \: x\dfrac{dv}{dx}  = \dfrac{3v - 2a {v}^{2}  - 2a {v}^{2} + v }{2av - 1}

\rm :  \implies \:  \: x\dfrac{dv}{dx}  = \dfrac{4v - 4a {v}^{2} }{2av - 1}

\rm :  \implies \:  \: x\dfrac{dv}{dx}  =  - \dfrac{4(a {v}^{2} - v) }{2av - 1}

\rm :  \implies \: \dfrac{2av - 1}{a {v}^{2}  - v} dv \:  =  \:  - 4 \: \dfrac{dx}{x}

Now, integrating both sides, we get

\rm :  \implies \:  \int \: \dfrac{2av - 1}{a {v}^{2}  - v} dv \:  =  \:  - 4 \:  \int\dfrac{dx}{x}

\rm :  \implies \:  log(a {v}^{2} -  v)  =  - 4 log(x)  +  log(c)

\begin{gathered} \because\:{\underline{\boxed{\bf{\blue{{\tt \: \int \:\dfrac{1}{x}  dx\:  =  \:  log(x)  + c }}}}}} \\ \end{gathered}

\begin{gathered} \because\:{\underline{\boxed{\bf{\blue{{\tt \: \int \:\dfrac{f'(x)}{f(x)}  dx\:  =  \:  log(f(x))  + c }}}}}} \\ \end{gathered}

\rm :  \implies \:  log(a {v}^{2} -  v)  =   log(x) ^{ - 4}   +  log(c)

\rm :  \implies \:  log(a {v}^{2} -  v)  =    log( {x}^{ - 4} c)

\rm :  \implies \:  {av}^{2}  - v \:  =  \: c {x}^{ - 4}

On substituting the value of v, we get

\rm :  \implies \: a\dfrac{ {y}^{2} }{ {x}^{2} }  - \dfrac{y}{x}  = c {x}^{ - 4}

\rm :  \implies \: \dfrac{a {y}^{2} - xy }{ {x}^{2} } =  \dfrac{c}{ {x}^{4} }

\rm :  \implies \:  {ax}^{2}  {y}^{2}  -  {yx}^{3}  = c

Similar questions