Math, asked by anithapudipatla2003, 4 months ago

solve (3xy-2aysquare) dx+(xsquare -2axy) dy=0​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(3xy - 2ay ^{2} )dx + ( {x}^{2}  - 2axy)dy = 0 \\

 \implies \frac{dy}{dx}  =  -   \frac{(3xy - 2a {y}^{2} )}{( {x}^{2} - 2axy) }  \\

 Let \: y = vx

 \implies\frac{dy}{dx}=v+x\frac{dv}{dx}\\

 \implies \: v + x \frac{dv}{dx}  =  \frac{2a {v}^{2}  {x}^{2} - 3v {x}^{2}  }{ {x}^{2}  - 2av {x}^{2} }  \\

 \implies \:  x \frac{dv}{dx}  =  \frac{(2a {v}^{2}  - 3v) }{(1 - 2av )}  - v \\

 \implies \:  x \frac{dv}{dx}  =  \frac{2a {v}^{2}  - 3v - v + 2a {v}^{2}  }{(1 - 2av )}   \\

 \implies \:  x \frac{dv}{dx}  =  \frac{4a {v}^{2}  - 4v }{(1 - 2av )}   \\

 \implies \:  \frac{(1 - 2av)}{(4a {v}^{2}  - 4v)} dv =  \frac{dx}{x}  \\

 \implies \:  \frac{(1 - av) - av}{4v(av  -1)} dv =  \frac{dx}{x}  \\

Integrating both sides,

 \implies \:   \int\frac{(1 - av) - av}{4v(av  -1)} dv = \int  \frac{dx}{x}  \\

 \implies \:    - \int  \frac{dv}{4v} -  \frac{a}{4}  \int \frac{dv}{(av - 1)}  = \int  \frac{dx}{x}  \\

  \implies  - \frac{1}{4}  ln(v)  -  \frac{a}{4}  ln(av - 1)  =   ln(x)  + c \\

  \implies  - \frac{1}{4}  ln( \frac{y}{x} )  -  \frac{a}{4}  ln(a \frac{y}{x} - 1)  =   ln(x)  + c \\

Similar questions