Math, asked by Rajeshwari11, 1 year ago

solve 4 into sec square 59 and minus cos square 31 by 3 into minus 2 by 3 sin 90 + 3 tan square 56 ×tan square 34 equal to X by 3

Answers

Answered by Nereida
24

\huge\star{\red{\underline{\mathfrak{Answer}}}}

x=11

Step by step explaination:-

In this question we need to use three concepts :

1) trigonometric ratios of some specific angles

2) trigonometric ratios of complementary angles

3)Trigonometric identities

SOLUTION:-

4( \frac{ { \sec }^{2}59 -  { \cot }^{2}31  }{3} ) -  \frac{2}{3}  \sin(90 )  + 3 { \tan}^{2} 56 \times  { \tan}^{2} 34 =  \frac{x}{3}

 4(\frac{{cosec}^{2} (90 - 59) -  { \cot }^{2} 31}{3}) -  \frac{2}{3} (1) + 3 { \cot}^{2} (90 - 56) \times  { \tan}^{2} 34 =  \frac{x}{3}

4( \frac{{ \cosec }^{2} 31 -  { \cot} ^{2} 31}{3}) -  \frac{2}{3}  + 3( \frac{1}{ \tan  {}^{2} 34 } ) \times  { \tan}^{2} 34 =  \frac{x}{3}

4(  \frac{1}{3} ) -  \frac{2}{3} + 3 =  \frac{x}{3}

 \frac{4}{3}  -  \frac{2}{3}  + 3 =  \frac{x}{3}

 \frac{4 - 2}{3}  + 3 =  \frac{x}{3}

 \frac{2}{3}  +  \frac{3}{1}  =  \frac{x}{3}

 \frac{2 + 9}{3}  =  \frac{x}{3}

 \frac{11}{3}   =  \frac{x}{3}

33 = 3x

\huge\boxed{\texttt{\fcolorbox{black}{yellow}{x=3}}}

{\pink{\underline{\mathfrak{Important\:formulas\:used:}}}}

 \sec(90 -  \theta)  =  \csc( \theta)

sin(90) = 1

 \tan(90 -  \theta)  =  \cot( \theta)

 { \cot}^{2}  \theta + 1 =  \csc ^{2}  \theta

cot \theta =  \frac{1}{tan \theta}

Similar questions