Math, asked by teesagajjar2435, 9 months ago

Solve : 4/x+y -3/x-y =5 9/x+y -5/x-y =4where x + y ≠ 0 and x – y ≠ 0​

Answers

Answered by Agastya0606
1

Given: The equations 4/x+y  -  3/x-y =  5 and 9/x+y  -  5/x-y  =  4

To find: Solve the equations.

Solution:

  • Now we have given the equations as: 4/x+y - 3/x-y = 5 and 9/x+y  -  5/x-y  =  4
  • Lets solve by substitution method.
  • Consider 1 / x+y = a and 1 / x-y = b, then:

               4a - 3b = 5 and 9a - 5b = 4

  • Now solving these equations, we get:

               4a - 3b = 5  ........ x 5   ........(i)

               9a - 5b = 4 ......... x 3   ........(ii)

  • So the equations becomes:

                          20a - 15b = 25

                    ( - ) 27a - 15b =  12

                          -7a            = 13

               -7a = 13

               a = -13/7 .........(iii)

  • Putting (iii) in (i), we get:

               4(-13/7) - 3b = 5

               -52/7 - 3b = 5

               -52/7 - 5 = 3b

               -52 - 35 / 7 = 3b

               -87/7 = 3b

               b = -87/21 = -29/7 .........(iV)

  • Again re substituting, we get:

               a = -13/7 = 1/x+y

               x+y = -7/13

               13x + 13y = -7     ........(v)

               b = -29/7 = 1/x-y

               x - y = =-7/29

               29x - 29y = -7    .......(vi)

               So (v)x29/13 + (vi), we get:

               29x + 29y = -7(29/13)

               29x - 29y = -7        

               58x           =  -7(29/13 + 1)

                58x = -7(42/13)

               x =  (-7x42/13x58) = -294/754 = - 0.389

  • Putting x in (v), we get:

               13(-0.389) + 13y = -7

               -5.057 + 13y = -7

               13y = -1.943

               y = -1.943/13

Answer:

            So the value of x is - 0.389 and y is -1.943/13.

Answered by mysticd
0

 Given \: \frac{4}{x+y} - \frac{3}{x-y} = 5 \: --(1) \\and \: \frac{9}{x+y} - \frac{5}{x-y} = 4 \: --(2)

 Let \: a = \frac{1}{x+y} \: and \: b = \frac{1}{x-y} \\now , Rewrite \:the \: equations

 \implies 4a - 3b = 5 \: --(3)

 \implies 9a - 5b = 4 \: ---(4)

/* Multiplying equation (3) with 5 and equation (4) with 3 , we get */

 \implies 20a - 15 b = 25 \: --(5) \:and \\</p><p>27a - 15b = 12 \: ---(6)

/* Subtract (5) from (6) we get */

\implies  7a = -13

\implies  a = \frac{ -13}{7}\: --(7)

 Put \: a = \frac{ -13}{7}\:in \: equation \: (3) , we \\get

 \implies 4 \times  \frac{ -13}{7} - 3b = 5

 \implies \frac{- 52}{7} - 3b = 5

 \implies  -3b = \frac{52}{7} + 5

 \implies  -3b = \frac{ 52+35}{7}

 \implies  -3b = \frac{ 87}{7}

 \implies  b = \frac{ -29}{7} \: --(8)

 Now, a = \frac{ -13}{7} = \frac{1}{x+y}

 \implies x + y = \frac{-7}{13} \: --(9)

 Now, b = \frac{ -29}{7} = \frac{1}{x-y}

 \implies x - y = \frac{-7}{29} \: --(9)

/* Add Equations (8) and (9) , we get */

 2x = \frac{-7}{13} - \frac{7}{29}

 \implies 2x = \frac{(-7) \times 42 }{377}

 \implies x = \frac{-147}{377} \: --(10)

/* Subtract equation (10) from (9) , we get */

 2y = \frac{-7}{13} + \frac{7}{29}

 \implies 2y = \frac{7 \times (-16) }{377}

 \implies y = \frac{-112}{377} \: --(11)

Therefore.,

 \red{ Value \:of \: x } \green { = \frac{-147}{377}}

 \red{ Value \:of \: y } \green { = \frac{-112}{377}}

•••♪

Similar questions