Math, asked by rajpaltushar34, 13 hours ago

solve 41/x - 47/y=35 ,47/x - 41/y=60 fast Iwill give extra 50 points who will give me correct answer and him or her as Brainiest answer​

Answers

Answered by varadad25
4

Answer:

The solution of the given linear equations is

\displaystyle{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{528}{1385}\:,\:\dfrac{528}{815}\:\right)\:}}}

Step-by-step-explanation:

The given linear equations are

\displaystyle{\sf\:\dfrac{41}{x}\:-\:\dfrac{47}{y}\:=\:35\:\quad\cdots\,(\:1\:)}

\displaystyle{\sf\:\dfrac{47}{x}\:-\:\dfrac{41}{y}\:=\:60\:\quad\cdots\,(\:2\:)}

Now, by substituting \displaystyle{\sf\:\dfrac{1}{x}\:=\:a\:\quad\&\quad\:\dfrac{1}{y}\:=\:b},

\displaystyle{\sf\:\dfrac{41}{x}\:-\:\dfrac{47}{y}\:=\:35\:\quad\cdots\,(\:1\:)}

\displaystyle{\implies\sf\:41a\:-\:47b\:=\:35\:\quad\cdots\,(\:3\:)}

\displaystyle{\sf\:\dfrac{47}{x}\:-\:\dfrac{41}{y}\:=\:60\:\quad\cdots\,(\:2\:)}

\displaystyle{\implies\sf\:47a\:-\:41b\:=\:60\:\quad\cdots\,(\:4\:)}

By adding equations ( 3 ) & ( 4 ), we get,

\displaystyle{\sf\:41a\:-\:47b\:+\:(\:47a\:-\:41b\:)\:=\:35\:+\:60}

\displaystyle{\implies\sf\:41a\:-\:47b\:+\:47a\:-\:41b\:=\:95}

\displaystyle{\implies\sf\:88a\:-\:88b\:=\:95}

\displaystyle{\implies\sf\:a\:-\:b\:=\:\dfrac{95}{88}\:\qquad\cdots\,[\:Dividing\:by\:88\:]}

\displaystyle{\implies\boxed{\sf\:a\:=\:\dfrac{95}{88}\:+\:b}}

By substituting this value in equation ( 4 ), we get,

\displaystyle{\sf\:47a\:-\:41b\:=\:60\:\quad\cdots\,(\:4\:)}

\displaystyle{\implies\sf\:47\:\times\:\left(\:\dfrac{95}{88}\:+\:b\:\right)\:-\:41b\:=\:60}

\displaystyle{\implies\sf\:\dfrac{47\:\times\:95}{88}\:+\:47b\:-\:41b\:=\:60}

\displaystyle{\implies\sf\:\dfrac{4465}{88}\:+\:6b\:=\:60}

\displaystyle{\implies\sf\:6b\:=\:60\:-\:\dfrac{4465}{88}}

\displaystyle{\implies\sf\:6b\:=\:\dfrac{60\:\times\:88\:-\:4465}{88}}

\displaystyle{\implies\sf\:6b\:=\:\dfrac{5280\:-\:4465}{88}}

\displaystyle{\implies\sf\:6b\:=\:\dfrac{815}{88}}

\displaystyle{\implies\sf\:b\:=\:\dfrac{815}{88\:\times\:6}}

\displaystyle{\implies\boxed{\pink{\sf\:b\:=\:\dfrac{815}{528}}}}

Now,

\displaystyle{\sf\:a\:=\:\dfrac{95}{88}\:+\:b}

\displaystyle{\implies\sf\:a\:=\:\dfrac{95}{88}\:+\:\dfrac{815}{528}}

\displaystyle{\implies\sf\:a\:=\:\dfrac{95\:\times\:6}{88\:\times\:6}\:+\:\dfrac{815}{528}}

\displaystyle{\implies\sf\:a\:=\:\dfrac{570}{528}\:+\:\dfrac{815}{528}}

\displaystyle{\implies\sf\:a\:=\:\dfrac{570\:+\:815}{528}}

\displaystyle{\implies\boxed{\green{\sf\:a\:=\:\dfrac{1385}{528}}}}

Now, by re-substituting values of a and b, we get,

\displaystyle{\sf\:\dfrac{1}{x}\:=\:a}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{1385}{528}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:\dfrac{528}{1385}}}}}

Now,

\displaystyle{\sf\:\dfrac{1}{y}\:=\:b}

\displaystyle{\implies\sf\:\dfrac{1}{y}\:=\:\dfrac{815}{528}}

\displaystyle{\implies\underline{\boxed{\blue{\sf\:y\:=\:\dfrac{528}{815}}}}}

∴ The solution of the given linear equations is

\displaystyle{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{528}{1385}\:,\:\dfrac{528}{815}\:\right)\:}}}

Similar questions