Math, asked by monjyotiboro, 4 months ago

solve!!!!!!!!!!!!!!!!!!!!!!!​

Attachments:

Answers

Answered by mahek339575
0

Step-by-step explanation:

i think ots helpful to you

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to  \infty } {\bigg(\dfrac{x}{x + 3} \bigg) }^{3x}

If we use direct substitution method, we get indeterminant form.

So, to evaluate this limit, Let assume that

\rm :\longmapsto\:y = \displaystyle\lim_{x \to  \infty } {\bigg(\dfrac{x}{x + 3} \bigg) }^{3x}

On taking log both sides, we get

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty } \: log {\bigg(\dfrac{x}{x + 3} \bigg) }^{3x}

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }3x \: log {\bigg(\dfrac{x}{x + 3} \bigg) }

\red{\bigg \{ \because \: log( {x}^{y} )  = y \: logx \bigg \}}

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{ log(x) -  log(x + 3)  }{\dfrac{1}{3x} }

\red{\bigg \{ \because \: log\bigg(\dfrac{x}{y} \bigg) = logx - logy  \bigg \}}

Using L - Hospital Rule, we have

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{\dfrac{d}{dx}  (log(x) -  log(x + 3)  )}{\dfrac{d}{dx} \bigg(\dfrac{1}{3x} \bigg) }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{\dfrac{1}{x}  - \dfrac{1}{x + 3} }{\dfrac{ - 1}{3 {x}^{2} } }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{\dfrac{x + 3 - x}{x(x + 3)}}{\dfrac{ - 1}{3 {x}^{2} } }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{\dfrac{3}{(x + 3)}}{\dfrac{ - 1}{3 {x} } }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{ - 9x}{x + 3}

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{ - 9x}{x(1 +  \dfrac{3}{x} )}

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to  \infty }\dfrac{ - 9}{1 +  \dfrac{3}{x}}

\rm :\longmapsto\:logy = \dfrac{ - 9}{1 + 0}

\rm :\longmapsto\:logy =  - 9

\rm :\longmapsto\:y =  {e}^{ - 9}

\rm :\longmapsto\:y = \dfrac{1}{ {e}^{9} }

Hence,

\bf :\longmapsto\:\displaystyle\lim_{x \to  \infty } \bf \:  {\bigg(\dfrac{x}{x + 3} \bigg) }^{3x}  = \dfrac{1}{ {e}^{9} }

Additional Information :-

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{sinx}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{tanx}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{ {sin}^{ - 1} x}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{ {tan}^{ - 1} x}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{log(1 + x)}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{ {e}^{x}  - 1}{x}  = 1}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to  0 } \bf \: \dfrac{ {a}^{x}  - 1}{x}  = loga}}}

 \blue{\boxed{ \bf{\displaystyle\lim_{x \to   \infty  } \bf \: \bigg(1 + \dfrac{1}{x} \bigg)^{x}  = e}}}

Similar questions