Math, asked by semwalanshul93, 19 days ago

solve. (4² + 6²) ×6

Answers

Answered by mahakulkarpooja615
2

Answer:

The value of  (4^{2} +6^{2} )*6 is 312.

                   

Step-by-step explanation:

Given : (4^{2} +6^{2} )*6

To find : The value of above expression.

Solution :

  • The given expression is,  (4^{2} +6^{2} )*6
  • We know that, square of any number is defined as product of given number with itself.
  • To solve the given expression, we have to use BODMAS rule, which means while solving a problem, first solve B-bracket, O-order, D-division, M-multiplication, A-addition and then S-subtraction.
  • The given equation is,  (4^{2} +6^{2} )*6
  •  First solving bracket, we know that

               4^{2} =16 and 6^{2} =36

  • ∴  (4^{2} +6^{2} )*6 =(16+36)*6

                           = 52*6

                           =312  

  • ∴ The value of  (4^{2} +6^{2} )*6 is 312.

                   

Answered by niteshrajputs995
2
  • As per the data given in the question, we have to find the value of the expression.

             Given data:- \left(4^{2}+6^{2}\right) \times 6.

            To find:-Value of given expression=?

            Solution:-

  • To solve the above equation we will follow the BODMAS rule.
  • It is the rule used to remember the order of operations to be followed while solving expressions in mathematics.

          where,

                 \begin{array}{l}\mathrm{B}=\text { brackets } \\\mathrm{O}=\text { order of powers or rules } \\\mathrm{D}=\text { division } \\\mathrm{M}=\text { multiplication } \\\mathrm{A}=\text { addition } \\\mathrm{S}=\text { subtraction }\end{array}

         Therefore,

              \left(4^{2}+6^{2}\right) \times 6\\=(16+36)\times6\\=52\times6\\=312.

        Hence we will get the value 312.

Similar questions