Solve 4cosx - 3secx = tanx
Answers
Answered by
45
☆☆YOUR ANSWER IS HERE☆☆
SOLUTION:--
4 cosx − 3 secx = tanx
4 cosx − 3/cosx = sinx/cosx
Multiply both sides by cosx
4 cos²x − 3 = sinx
4 (1−sin²x) − 3 = sinx
1 − 4 sin²x = sinx
4 sin²x + sinx − 1 = 0
sinx = (−1±√(1²−4*4*−1))/(2*4)
sinx = (−1±√17)/8
sinx = (√17−1)/8
x = sin⁻¹((√17−1)/8) + 2πn ≈ 2πn + 0.401053217
x = π−sin⁻¹((√17−1)/8) + 2πn ≈ 2πn + 2.740539437
sinx = −(√17+1)/8
x = −sin⁻¹((√17+1)/8) + 2πn ≈ 2πn − 0.695003598
x = π+sin⁻¹((√17+1)/8) + 2πn ≈ 2πn + 3.836596252
SOLUTION:--
4 cosx − 3 secx = tanx
4 cosx − 3/cosx = sinx/cosx
Multiply both sides by cosx
4 cos²x − 3 = sinx
4 (1−sin²x) − 3 = sinx
1 − 4 sin²x = sinx
4 sin²x + sinx − 1 = 0
sinx = (−1±√(1²−4*4*−1))/(2*4)
sinx = (−1±√17)/8
sinx = (√17−1)/8
x = sin⁻¹((√17−1)/8) + 2πn ≈ 2πn + 0.401053217
x = π−sin⁻¹((√17−1)/8) + 2πn ≈ 2πn + 2.740539437
sinx = −(√17+1)/8
x = −sin⁻¹((√17+1)/8) + 2πn ≈ 2πn − 0.695003598
x = π+sin⁻¹((√17+1)/8) + 2πn ≈ 2πn + 3.836596252
Answered by
0
Answer:
firstly convert sec x and tan x into sin and cos then covert cos^2x in 1_sin^2x and make quadratic equation then solve it and use sinx=siny
Similar questions