Math, asked by amiteshsamal2005, 10 months ago

solve 5 to the power x + 1 + 5 to the power 2 minus x is equal to 5 Cube + 1​

Answers

Answered by ITzBrainlyGuy
25

ANSWER:

To find

 \small{ \rm{ {5}^{x + 1}  +  {5}^{2 - x}  =  {5}^{3} + 1 }}

 \small{ \rm{ {5}^{x + 1}  +  {5}^{2 - x}  =  126 }}

Using

 \small{ \sf{ {a}^{m + n}  =  {a}^{m} \times  {a}^{n}    }}

 \small{ \sf{  {a}^{m - n}  =  \frac{ {a}^{m} }{ {a}^{n} }  }}

 \small{ \rm{ {5}^{x } \times  {5}  + \frac{ {5}^{2} }{{5}^{x} } = 126  }}

Assuming 5^x = y

 \small { \rm{5y + \frac{25}{y} = 126 }}

 \small{ \rm{ \frac{5 {y}^{2}  + 25}{y} = 126 }} \\  \small{ \rm{  {5y}^{2} - 126y + 25 = 0 }}

Solve the quadratic equation

 \small{ \rm{  {5y}^{2}  +  ( - y  - 125y) + 25 = 0 }}

 \small{ \rm{  {5y}^{2} -y  - 125y+ 25 = 0 }}

Taking common

 \small{ \rm{ y( {5y - 1)}  - 25(5y - 1) = 0 }}

 \small{ \rm{(5y - 1  )(y - 25) = 0}}

 \small{ \rm{ 5y - 1= 0 }} \\ \small{ \rm{ y =  \frac{1}{5} }}

 \small{ \rm{ y - 25 = 0 }} \\  \small{ \rm{ y  = 25 }}

Here

y = 5^x

 {5}^{x }  =  \frac{1}{5}  \\{ \sf{ Here \: substitute \: x =  - 1}}  \\  {5}^{ - 1}  =  \frac{1}{5} \\ \frac{1}{5}  =  \frac{1}{5}

LHS = RHS

Hence x = - 1

 {5}^{x}  = 25 \\  {5}^{x}  =  {5}^{2}

Compare

x = 2

Hence

x = - 1 , 2

Answered by suchismitadas31
5

HERE IS YOUR ANSWER...

Attachments:
Similar questions