Math, asked by Prisci, 1 year ago

Solve 5/x+1-2/y-1=1/2,10/x+1+2/y-1=5/2


AsmaAnwar: is that a comma after =1/2???

Answers

Answered by rainanibu
53

Answer:

Let 1/x be u and 1/y be v

therefore,

5u-2v=1/2...........eqn(i)

10u+2v=5/2.......eqn(ii)

on solving (i) and (ii)

-2v and +2v gets canceled

hence,

15u=3

u=3/15

u=1/5

u=1/5

1/x=1/5

therefore x=5

substituting x=5 in 5/x+1-2/y-1=1/2

5/5-2y=1/2

1-2y=1/2

taking LCM

y-2/y=1/2

cross multiplying

2y-2=y

2y-y=2

y=2

hence x=5 and y=2

hope it helps......

please mark as the brainliest

Answered by vinod04jangid
7

Answer:

x = 4, y = 5

Step-by-step explanation:

Given, \frac{5}{x+1} - \frac{2}{y-1}  = \frac{1}{2}  and  \frac{10}{x+1} + \frac{2}{y-1} = \frac{5}{2}

To Find: Solution of the given equation.

Solution:

Let \frac{1}{x+1} = u and \frac{1}{y-1} = v.

So, the equations become,

5u - 2v = \frac{1}{2}  ----(1)  and 10u + 2v = \frac{5}{2}  -----(2)

Adding both equations,

⇒ 5u -2v + 10u + 2v = \frac{1}{2} + \frac{5}{2}

⇒ 15u = \frac{6}{2}

⇒ 15u = 3

⇒ u = \frac{1}{5}

Putting u in equation (1),

⇒ 5 × \frac{1}{5} - 2v = \frac{1}{2}

⇒ 2v = 1 - \frac{1}{2}

⇒ v = \frac{1}{2} × \frac{1}{2}

⇒ v =\frac{1}{4}

Now,

u = \frac{1}{x+1}   and  ⇒ v =\frac{1}{y-1}

⇒ x + 1 = \frac{1}{\frac{1}{5} }  and  ⇒ y - 1 = \frac{1}{\frac{1}{4} }

⇒ x = 5 - 1 and  ⇒ y = 4 + 1

⇒ x = 4 and ⇒ y = 5

Hence, solution of the given equations is x= 4, y =5.

#SPJ2

Similar questions