Math, asked by THEBFG, 1 year ago

Solve : 5^(x+1) + 5^(2-x) = 5³+1

Answers

Answered by Panzer786
103
Hope it will help you !!
Attachments:

THEBFG: thank you
THEBFG: thank you
Anonymous: nyc ♡
mydear786: awesome
Answered by MoonGurl01
87
Hey mate,☺☺☺

Here is your answer...✨✨✨

➡➡➡➡➡➡➡➡➡➡➡➡➡

 {5}^{x + 1} + {5}^{2 - x} = {5}^{3} + 1

 {5}^{x + 1} + {5}^{2 - x} = 126

 {5}^{x} .5 + {5}^{2} . {5}^{ - x } =126

 {5}^{x} .5 + \frac{25}{ {5}^{x} } = 126

5y + \frac{25}{y} = 126 \: \: \: \: where \: {5}^{x} = y

5 {y}^{2} + 25 = 126y

5 {y}^{2} - 126y + 25 = 0

5 {y}^{2} - 125y - y + 25 = 0

5y(y - 25) - 1(y - 25) = 0

(y - 25)(5y - 1) = 0

y - 25 = 0 \: \: \: or \: \: \: 5y - 1 = 0

y = 25 \: \: \: \: or \: \: \: \: y = \frac{1}{5}

 {5}^{x} = 25 = {5}^{2} \: \: \: \: \: or \: \: \: \: \: {5}^{x} = {5}^{ - 1}

x = 2 \: \: \: \: \: or \: \: \: \: \: x = - 1

Hence, 2 and -1 are the roots of the given equation....

✔✔✔✔✔✔✔✔✔✔✔✔✔

Hope this will help you...✨✨✨

Keep Asking..✌✌✌

❤❤❤ THANKS....❤❤❤

Devilking08: great wala answer meri cola ❤️❤️❤️❤️
Anonymous: Nice answer :)
Deepsbhargav: Bohot khub sista.... nice answer..
SillySam: superb answer ✌
THEBFG: thank you
Similar questions