solve 55th questions
Attachments:
Answers
Answered by
3
Here is your answer
✨✨✨✨
Attachments:
Answered by
1
Sinθ + Cosθ = Cosθ
Squaring on both sides
Sin²θ + 2SinθCosθ + Cos²θ = 2Cos²θ
Since, Sin²θ + Cos²θ = 1,
2SinθCosθ = 2Cos²θ - 1
Now, we have
( Cosθ - Sinθ )² = Sin²θ - 2SinθCosθ + Cos²θ
( Cosθ - Sinθ )² = 1 - 2SinθCosθ
But, 2SinθCosθ = 2Cos²θ - 1
Hence,
( Cosθ - Sinθ )² = 1 - ( 2Cos²θ - 1 )
( Cosθ - Sinθ )² = 1 - 2Cos²θ + 1
( Cosθ - Sinθ )² = 2 - 2Cos²θ
( Cosθ - Sinθ )² = 2( 1 - Cos²θ )
( Cosθ - Sinθ )² = 2Sin²θ
Cosθ - Sinθ = Sinθ
Hence proved
HOPE IT HELPS !!
Similar questions