Math, asked by 0ManishKumar0, 4 months ago

solve 5x +(x-1-x/2)-(7x-1)+1/2=0 hence find m if 1/x+m=3

Please don't spam​

Answers

Answered by bobyabhay12
0

Step-by-step explanation:

when you simplify it will x=1/3

which means

1/x+m=3

1/1/3+m=3

3+m=3

m=3-3

m=0

give brilliant if you like

Answered by PharohX
3

Step-by-step explanation:

GIVEN :-

 \tt5x + \bigg(x - 1 -  \frac{x}{2} \bigg ) - (7x - 1) +  \frac{1}{2}  = 0 \\

TO FIND :-

 \tt \: value \:  \: of \:  \: (m )\:  \: if \\  \frac{1}{x +  m }  = 3

SOLUTION:-

 \tt5x + \bigg(x - 1 -  \frac{x}{2} \bigg ) - (7x - 1) +  \frac{1}{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\   \implies \tt5x + x  -  1 -  \frac{x}{2} - 7x  +  1+  \frac{1}{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bigg(  \tt5x + x -  \frac{x}{2}  - 7x \bigg) +  \bigg( - 1 + 1 +  \frac{1}{2}  \bigg) = 0 \:   \\  \\  \implies \bigg(  \tt- x -  \frac{x}{2}  \bigg) +  \frac{1}{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \implies \tt - \frac{ 3x}{2}  +  \frac{1}{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies  \tt  - \frac{3x}{2}  =  -  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \tt  \: x =  \frac{1}{3}

Now calculation of m

  \tt \implies\frac{1}{x +  m }  = 3 \\   \\  \implies \tt \: x + m =  \frac{1}{3}  \\  \\  \implies  \tt\frac{1}{3}  + m =  \frac{1}{3}  \\  \\  \implies \:  \tt \: m = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions