solve 6 plss i'll mark as brainliest
Answers
Question
The Equation 4x²+(k-2)x+1=0 has no real roots Find the range of value of k
Solution
Given
4x²+(k-2)x+1=0 has no real roots
To find
The range of value of k
Now take
4x²+(k-2)x+1=0
so compare with
ax² + bx + c + 0
we get
a=4 ,b = (k-2) and c= 1
For No real roots
Discriminant(D) < 0 , where D = b²-4ac < 0
By putting the value on formula , we get
(k-2)²-4×4×1<0
(k-2)²-16<0
(k-2)²<16
k-2<±4
k<±4+2
When +4
k<4+2
k<6
When -4
k<-4+2
k<-2
Here in this question, concept of factorisation is used. We have given an equation and we have to find for value of k will the given equation has no roots.
Roots of any quadratic equation can be classified by value of discriminant as::
It means that value of discriminant should be less than 0 if the equation has no real roots.
» Given equation::
• 4x²+(k-2)x+1=0
» Here value of::
• a=4
• b=(k-2)
• c=1
» Applying formula for discriminant::
⇒ D = b²-4ac
⇒ 0 > (k-2)²-4(4)(1)
⇒ 0 > (k-2)²-16
» Applying identity:-
(A-B)²=A²+B²-2AB, where A=k and B=2
⇒ 0 > k²+2²-2(k)(2)-16
⇒ 0 > k²+2²-4k-16
⇒ 0 > k²+4-4k-16
⇒ 0 > k²-4k-12
Now factorisation::
⇒ 0 > k²-6k+2k-12
⇒ 0 > k(k-6)+2(k-6)
⇒ 0 > (k-6)(k+2)
⇒ 0 > k=6,-2
So the value of k will be::
k ≥ -2
k≤ 6