Math, asked by mitalipatel0802, 1 year ago

solve: 6x + 3y = 6xy & 2x + 4y = 5xy​

Answers

Answered by Anonymous
7

Answer:

6x+3y=6xy

3 (2x+y)=6xy

2x+y=2xy eq.1

2x+4y=5xy eq.2

subtract eq.1 and eq.2

so,

2x+y=2xy

2x+4y=5xy

- - -

-3y= -3xy

x=1

put the value of x in eq.1 or 2

2x+y=2xy

2 (1)+y=2 (1)y

2+y=2y

y=2

hope you understand

and follow.me

Answered by Anonymous
3

\Large{\underline{\underline{\bf{Solution:-}}}}

\rm{ \frac{6}{y}  +  \frac{3}{x}  = 6.......(i)}

\rm{\frac{2}{y}  +  \frac{4}{x}  = 5........(ii)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\bold{\underline{\underline{Putting\: \frac{1}{x} =p \: and \: \frac{1}{y}=q \: in \: the \: given \: equation}}}}

\rm{3p+6q-6=0}

\rm{4p+2q-5=0}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\bold{\underline{\underline{By\: cross \: multiplication\: method,\: we \: obtain:-}}}}

\rm{  \frac{p}{ - 30 - ( - 12)}  =  \frac{q}{ - 24 - ( - 15)}  =   \frac{1}{6 - 24} }

\rm{ \frac{p}{ - 18}  \frac{ - q}{ - 9}  =  \frac{1}{ - 18} }

\rm{p = 1 \: and \: q =  \frac{1}{2} }

\rm{p =  \frac{1}{x)}  = 1 \: and \: q =  \frac{1}{y}  =  \frac{1}{2} }

\rm{x=1 \: and \: y = 2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\rm{\boxed{\boxed{x=1}}}}

{\rm{\boxed{\boxed{y=1</p><p>2}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\bf{Thanks}}}}

Similar questions