Math, asked by khansami0786, 3 months ago

Solve 6x3 - 11x2 – 3x + 2 = 0, given that its
roots are in harmonic progression.​

Answers

Answered by Itzsweetcookie
1

Answer:

Consider the given equation,

6x3−11x2+6x−1=0

Put,x=1 we get

6.13−11.12+6.1−1=0

0=0

Hence, x=1 ⇒x−1=0 is zeroes os given equation.

Now

x−1)6x3−11x2+6x−16x2−5x+1

−(6x3−6x2)

−5x2+6x−1

−(−5x2+5x)

x−1

−(x−1)

Answered by swethassynergy
1

The roots of the equation 6x^{3} -11x^{2} -3x+2=0 are 1,\frac{1}{2}\ and  \ \frac {1}{3} .

Step-by-step explanation:

Given:

The equation 6x^{3} -11x^{2} -3x+2=0.

The roots are in harmonic progression.

To Find:

The roots of the equation 6x^{3} -11x^{2} -3x+2=0.

Formula Used:

If

Solution:

Equation 6x^{3} -11x^{2} -3x+2=0 roots are in harmonic progression.

If we put x=\frac{1}{y}  in  the equation 6x^{3} -11x^{2} -3x+2=0  then roots  will be  in  Arithmetic progression.

Equation will be 6(\frac{1}{y} )^{3} -11(\frac{1}{y} )^{2} -3(\frac{1}{y} )+2=0

                             y^{3} -6y^{2} +11y-6=0 and roots   in A.P.

  Let  roots of equation are a-d.a and a+d which are in A.P.

  a-d+a+a+d=-\frac{-6}{1}

  a-d+a+a+d=6

  3a=6

  a=2

(a-d)a(a+d)=-\frac{-6}{1}

(a-d)a(a+d)=6

Putting the value of a-=2

(2-d)\times 2\times(2+d)=6

(2-d)\times(2+d)=\frac{6}{2}

2^{2} -d^{2} =3

d^{2} =4-3=1

d=1

The value of a-d,a and a+d will be (2-1),(2) \ and (\ 2+1) or 1,2 and 3.

It mean the value of y=1,2 and 3.

Hence value of x  will be 1,\frac{1}{2}\ and  \ \frac {1}{3}.

Thus,the roots of the equation 6x^{3} -11x^{2} -3x+2=0 are 1,\frac{1}{2}\ and  \ \frac {1}{3} .

PROJECT CODE#SPJ3

Similar questions