Math, asked by cute7936, 26 days ago

Solve : 7√7 × (-4√2)
Simplyfy : √3/3 - √3/6
Simplyfy : 8√21 / 4√7
Solve : (1+√5) - (4+√5)
Solve : (3√2 - √8 + √32 - √2)​
Step By Step answer pls

Answers

Answered by BlessedOne
56

Question 1 :

  • \tt\:7\sqrt{7} \times (-4\sqrt{2})

Solution :

\tt\:7\sqrt{7} \times (-4\sqrt{2})

Multiplying the numbers

\tt\color{blue}{\implies\:-28 \sqrt{14}}

_______________________

Question 2 :

  • \tt\:\frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{6}

Solution :

\tt\:\frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{6}

LCM of 3 and 6 = 6

\tt\implies\:\frac{(2 \times \sqrt{3}) - (1 \times \sqrt{3}) }{6}

Multiplying

\tt\implies\:\frac{2\sqrt{3} - \sqrt{3}}{6}

Performing subtraction in numerator

\tt\implies\:\frac{1\sqrt{3}}{6}

\tt\color{blue}{\implies\:\frac{\sqrt{3}}{6}}

_______________________

Question 3 :‎

  • \tt\:\frac{8\sqrt{21}}{4\sqrt{7}}

Solution :

\tt\:\frac{8\sqrt{21}}{4\sqrt{7}}

Reducing the fraction to lower terms

\tt\implies\:\frac{\cancel{8}\sqrt{21}}{\cancel{4}\sqrt{7}}

\tt\implies\:\frac{2\sqrt{21}}{1\sqrt{7}}

\tt\color{blue}{\implies\:\frac{2\sqrt{21}}{\sqrt{7}}}

_______________________

Question 4 :‎

  • \tt\:(1+\sqrt{5}) -(4+\sqrt{5})

Solution :

\tt\:(1+\sqrt{5}) -(4+\sqrt{5})

Multiplying the signs and removing our brackets

\tt\implies\:1+\sqrt{5}-4-\sqrt{5}

Arranging the numbers

\tt\implies\:1-4+\sqrt{5}-\sqrt{5}

Numbers with opposite signs gets cancelled out

\tt\implies\:1-4+\cancel{\sqrt{5}}-\cancel{\sqrt{5}}

\tt\implies\:1-4

\tt\color{blue}{\implies\:(-3)}

_______________________

Question 5 :‎

  • \tt\:3\sqrt{2}-\sqrt{8}+\sqrt{32}-\sqrt{2}

Solution :

\tt\:3\sqrt{2}-\sqrt{8}+\sqrt{32}-\sqrt{2}

Splitting the numbers under square root

\tt\implies\:3\sqrt{2}-\sqrt{2 \times 2 \times 2}+\sqrt{2 \times 2 \times 2 \times 2 \times 2}-\sqrt{2}

Now taking the numbers outside the square root

\tt\implies\:3\sqrt{2}-2\sqrt{2}+2 \times 2\sqrt{2}-\sqrt{2}

\tt\implies\:3\sqrt{2}-2\sqrt{2}+4\sqrt{2}-\sqrt{2}

Proceeding with simple calculation

\tt\implies\:1\sqrt{2}+4\sqrt{2}-\sqrt{2}

\tt\implies\:\sqrt{2}+4\sqrt{2}-\sqrt{2}

\tt\implies\:5\sqrt{2}-\sqrt{2}

\tt\implies\:5\sqrt{2}-1\sqrt{2}

\tt\color{blue}{\implies\:4\sqrt{2}}

_______________________

More to know :

Multiplication of surds -

  • While multiplying the numbers with surds we first multiply the numbers outside the square root and then the numbers under square root.

Example :

2√5 × 4√3

First multiply 2 and 4 then √5 and √3

= 8√15

Addition and subtraction of surds -

  • The criteria for adding and subtracting surds is only that the numbers under the square root must be same.

Example :

(i) 5√7 + 10√7

As both the numbers have same numbers under square root i.e., 7 , we can easily add them

= 15√7

(ii) 3√10 + 45√10

As both the numbers have same numbers under square root i.e., 10 , we can easily subtract them

= 48√7

_______________________

Note : Scroll left to right to view the answer properly. Hope it helps you :D~‎

Similar questions