Math, asked by kiranpedaprolu, 11 months ago

solve 7 sin square theta + 3 cos square theta is equal to 4​

Answers

Answered by jojo212212
0

Answer aduldu  hedldai cambou sorry thats my language

Step-by-step explanation:

Answered by Anonymous
2

Answer:

 \theta  = n\pi +  { - 1}^{n} ( \frac{\pi}{6})

Step-by-step explanation:

7  { \sin}^{2}   \theta \:  + 3 { \cos}^{2} \theta = 4 \\   \implies7 { \sin }^{2}  \theta + 3(1 -  { \sin }^{2}  \theta) = 4  \\  \implies7 { \sin }^{2}  \theta  + 3 - 3 { \sin}^{2}  \theta = 4 \\  \implies4 { \sin }^{2}  \theta = 1 \\  \implies4 { \sin }^{2}  \theta - 1 = 0 \\  \implies(2 \sin \theta  + 1)(2 \sin  \theta + 1) = 0 \\  \\ so \: we \: get \:  \\  \sin \theta =  -  \frac{1}{2} \:   \: and \:   \: \sin \theta =  \frac{1}{2}  \\  \sin \theta =  -  \sin( \frac{\pi}{6} ) and \:  \sin \theta =  \sin \frac{\pi}{6}  \\  \theta = \pi +  \frac{\pi}{6}  \:  \: and \:  \: \theta =  \frac{\pi}{6}  \\ therefore \:  \theta =  \frac{7\pi}{6} and \:  \frac{\pi}{6}

Similar questions