Math, asked by Sir100, 1 year ago

Solve 7b plz
(Transformation of trigonometric formulae )
#salute u if u solved it

Attachments:

Answers

Answered by Anonymous
11

Solution :-

Given to prove :-

 \small{\dfrac{Cos(5\alpha)Sin(2\alpha) - Cos(4\alpha)Sin(3\alpha)}{Sin(5\alpha)Sin(2\alpha) - Cos(4\alpha)Cos(3\alpha)} = Cot(2\alpha)}

Now multiply both numerator and denominator by 2 .

\small{\rightarrow \dfrac{2.Cos(5\alpha)Sin(2\alpha) - 2.Cos(4\alpha)Sin(3\alpha)}{2.Sin(5\alpha)Sin(2\alpha) - 2.Cos(4\alpha)Cos(3\alpha)}}

Now as

Sin(a + b) - Sin(a - b) = 2.Cos(a).Sin(b)

Cos(a - b) - Cos(a + b) = 2.Sin(a).Sin(b)

Cos(a - b) + Cos(a + b) = 2.Cos(a).Cos(b)

So our expression became :-

 \small{\rightarrow \dfrac{[Sin( 5\alpha + 2\alpha) - Sin( 5\alpha - 2\alpha)] - [ Sin( 4\alpha + 3\alpha) - Sin( 4\alpha - 3\alpha)] }{[Cos( 5\alpha - 2\alpha) - Cos( 5\alpha + 2\alpha)] - [ Cos( 4\alpha + 3\alpha) + Cos( 4\alpha - 3\alpha)] }}

\small{ \rightarrow \dfrac{[Sin( 7\alpha) - Sin( 3\alpha)] - [ Sin( 7\alpha ) - Sin(\alpha)] }{[Cos( 3\alpha) - Cos( 7\alpha)] - [ Cos( 7\alpha) + Cos(\alpha)]}}

 \rightarrow \dfrac{Sin(\alpha) - Sin( 3\alpha) }{Cos( 3\alpha)  -  Cos(\alpha)}

Now as we have

 Sin(C) - Sin(D) = 2.Cos \left(\dfrac{C+D}{2}\right)Cos \left(\dfrac{C-D}{2}\right)

 Cos(C) - Cos(D) = -2.Sin \left(\dfrac{C+D}{2}\right)Cos \left(\dfrac{C-D}{2}\right)

By applying it :-

 \small{\rightarrow \dfrac{2.Cos \left(\dfrac{\alpha + 3\alpha}{2}\right)Cos \left(\dfrac{\alpha - 3\alpha}{2}\right) }{-2.Sin\left(\dfrac{3\alpha + \alpha}{2}\right)Cos \left(\dfrac{3\alpha - \alpha}{2}\right)}}

 \small{\rightarrow \dfrac{2.Cos \left(\dfrac{4\alpha}{2}\right)Cos \left(\dfrac{-2\alpha}{2}\right)}{2.Sin\left(\dfrac{4\alpha}{2}\right)Cos\left(\dfrac{2\alpha}{2}\right)}}

 \rightarrow \dfrac{-2.Cos(2\alpha).Cos(\alpha)}{-2.Sin(2\alpha).Cos(\alpha)}

 \rightarrow \dfrac{Cos(2\alpha)}{Sin(2\alpha)}

 \rightarrow Cot(2\alpha)

Now

 \rightarrow Cot(2\alpha) = Cot(2\alpha)

As LHS = RHS

Hence Proved

Similar questions