Math, asked by krish171817, 1 year ago

solve 7th and 9th please​

Attachments:

Answers

Answered by Anonymous
1

 \bf{ Q. \: (vii) \:   \:  \: {(1 + i)}^{ - 3} } \\  \\   \red{\bf{solution} \implies} \\  \\  \implies \:  {(1 + i)}^{ - 3}  \\  \\  \implies \:  \frac{1}{ {(1 + i)}^{3} }  \\  \\   \green{\bf{using \: identity \:  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)}} \\  \\  \implies \:  \frac{1}{1 +  {i}^{3}  + 3i(1 + i)}  \\  \because \:  {i}^{3} =  - i \:  \:  {i}^{2}   =  - 1 \\ \\   \implies \:  \frac{1}{1 - i + 3i + 3 {i}^{2} }   \\  \\  \implies \frac{1}{1 + 2i - 3}   \\  \\  \implies \:  \boxed{ \frac{1}{2(i - 1)} }

 \bf{Q. \: (ix) \: ( -  \sqrt{5}  + 2 \sqrt{ - 4)}  + (1 -  \sqrt{ - 9)}  + (2 + 3i)(2 - 3i)} \\  \\  \red{ \bf{solution}\implies}  \\  \implies  \bf{ -  \sqrt{5}  + 4i + 1 - 3i + (4 - 9 {i}^{2} )} \\  \\  \implies \: 1 -  \sqrt{5}  + i + 4 + 9 \\  \\  \implies \:  \boxed{14 -  \sqrt{5}  + i} \because{i}^{2}=-1

Similar questions