Math, asked by amanalex8709, 9 months ago

Solve : 7x-2y = 3
112.-311​

Answers

Answered by anshuman1052
0

Answer:

Given equations are 7x - 2y = 3 ….(1) 

22x - 3y = 16 ….(2) 

Here, a1=7,b1=-2 and c1=3 [from (1)] 

a22=22,b2=-3 and c2=16 [from (2)] 

Now, a1a2=722 and b1b2=-2-3=23 

Since a1a2≠b1b2. Hence, the given system has a unique solution. 

By cross multiplication method, we have 

 

x(-2)×(-16)-(-3)×(-3)=y(-3)×22-(-16)×7=17×(-3)-22×(-2)

⇒x32-9=y-66+112=1-21+44 

implies x23=y46=123 

When x23=123⇒x=1 

and y46=123⇒y=2 

Hence, x=1y=2} is the required solution. 

(ii) The given system of equations is 3x + y = 17 ....(1) 

8x + 11y = 37 ....(2) 

Here a1=3,b1=1 and c1=17 [from (1)] 

a2=8,b2=11 and c2=37 [from (2)] 

Now a1a2=38,b1b2=111 

Since a1a2≠b1b2. Hence, the given system has a unique solution. 

We can write the equations as 

3x+y-17=0and8x+11y-37=0 

By cross multiplication method, we have 

 

x1×(-37)-11×(-17)=y(-17)×8-(-37)×3=13×11-8×1

implies x150=y-25=125 When x150=125⇒x=6 

and y-25=125⇒y=-1 

Hence, x=6y=-1} is the required solution. 

(iii) The given system of equations is 2x + 5y - 17 = 0 ....(1) 

5x + 3y - 14 = 0 ....(2) 

Here, a1=2,b1=5 and c1=-17 [from (1)] 

a2=5,b2=3 and c2=-14 [from (2)] 

Now, a1a2=25,b1b2=53 

Since a1a2≠b1b2. Hence, the given system of equations has a unique solution. 

By cross multiplication method, we have 

 

x5×(-14)-3×(-17)=y(-17)×5-(-14)×2=12×3-5×5

implies x-70+51=y-85+28=16-25 

implies x-19=y-57=1-19 

implies When x-19=1-19⇒x=1 

and y-57=1-19⇒y=3 

Hence, x=1y=3} is the required solution.

Related Videos

VIEW ALL

1:20

6:02

2:48

1:19

5:04

2:47

4:15

IF MY ANSWER IS HELPFUL TO YOU MARK ME AS BRAINILIS

Answered by survenikhil94
0

ANSWER

Consider the given equations.

7x−2y=20 ……… (1)

11x+15y=−23 …….. (2)

From equation (1), we get

y=

2

7x−20

On putting value of y in equation (2), we get

11x+15(

2

7x−20

)=−23

11x+

2

105x

−150=−23

2

127x

=127

x=2

Therefore,

y=

2

7×2−20

y=−3

Hence, the value of x and y is 2,−3.

please make me a brainlist

Similar questions