Math, asked by jayaramduppatla74, 1 year ago

solve 9 log 2 to the base 3​

Answers

Answered by smuni
5

log base 9 of x + log base 3 of x=6

logx/log 9 +log x/log 3=6

log x/ 2log3 +log x/log 3=6

(log x/ log 3 ).(1/2+1)=6

log x/log3 =6×2/3=4

log x= 4.log 3

log x= log (3)^4

log x= log 81

x=81 , answer.

Answered by pulakmath007
4

\displaystyle \sf{  {9}^{ log_{3}(2) }  } =  \bf 4

Correct question :

\displaystyle \sf{ Solve :\:  \:  {9}^{ log_{3}(2) }  }

Given :

\displaystyle \sf{  {9}^{ log_{3}(2) }  }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  {9}^{ log_{3}(2) }  }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ Let\:  \:  x =  {9}^{ log_{3}(2) }  }

Taking logarithm in both sides we get

\displaystyle \sf{ log \: x = log \: \bigg( {9}^{ log_{3}(2) } \bigg)  }

\displaystyle \sf{ \implies }log \: x = log \: 9 \times log_{3}(2)

\displaystyle \sf{ \implies }log \: x = log \: {3}^{2}  \times log_{3}(2)

\displaystyle \sf{ \implies }log \: x = 2log \: {3}^{}  \times  \frac{log \: 2}{log \: 3}

\displaystyle \sf{ \implies }log \: x = 2log \: {2}^{}

\displaystyle \sf{ \implies }log \: x = log \: {2}^{2}

\displaystyle \sf{ \implies }log \: x = log \: 4

\displaystyle \sf{ \implies }x = 4

 \boxed{ \:  \: \displaystyle \sf{ \therefore  \:    {9}^{ log_{3}(2) }  }  = 4\:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

#SPJ3

Similar questions