Math, asked by rlohith02, 21 days ago

solve 9th and 10th questions ​

Attachments:

Answers

Answered by shabusandra71
2

Answer:

9)32m

Step-by-step explanation:

area of trapezium =1440

area of trapezium=1/2×distance (sum of parallel sides)

1440=1/2×distance(54.6+35.4)

1440=1/2×distance×90

1440×2=distance×90

2880=distance×90

distance =2880/90=32

is it helpful??

Answered by mathdude500
4

\large\underline{\sf{Solution-9}}

Given that,

Area of trapezium = 1440 sq. cm.

Length of parallel sides are 54.6 cm and 35.4 cm

Let assume that length of parallel sides be denoted by a and b

So, a = 54.6 cm and b = 35.4 cm

Let assume that the distance between two parallel lines be h cm

We know,

Area of trapezium whose length of parallel sides are a units and b units respectively and distance between parallel lines is h units is given by

\boxed{\sf{  \: \: \rm \:  \: Area_{(trapezium)} \:  =  \:  \frac{1}{2}(a + b) \times h \:  \: }} \\

So, on substituting the values, we get

\rm \: 1440 = \dfrac{1}{2}(54.6 + 35.4) \times h \\

\rm \: 1440 = \dfrac{1}{2} \times 90 \times h \\

\rm \: 1440 = 45 \times h \\

\rm\implies \:h \:  =  \: 32 \: cm \\

Hence,

Distance between the parallel lines is 32 cm

\large\underline{\sf{Solution-10}}

Given that,

The diagonal of the quadrilateral is 24 m and length of perpendiculars drawn from the opposite vertices on this diagonal is 8 m and 13 m.

Let assume that the perpendiculars be represented as

\rm \: h_1 = 8 \: m \\

\rm \: h_2 = 13 \: m \\

Now, we know that

\boxed{\sf{ \rm \:  \: Area_{(quadrilateral)} \:  =  \:  \frac{1}{2}(h_1 + h_2) \times diagonal \:  \: }} \\

So, on substituting the values, we get

\rm \:  \: Area_{(quadrilateral)} \:  =  \:  \frac{1}{2} \times (8 + 13) \times 24 \:  \:  \\

\rm \:  \: Area_{(quadrilateral)} \:  =  \:  21 \times 12 \:  \:  \\

\rm \:  \: Area_{(quadrilateral)} \:  =  \:  252 \:  {m}^{2}  \:  \:  \\

Hence,

\rm\implies \: \boxed{\sf{  \:\:  \: \rm \:  \: Area_{(quadrilateral)} \:  =  \:  252 \:  {m}^{2}  \:  \:  }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions