Math, asked by tarunarayan40, 8 months ago

solve 9x² - 155x - 500 using splitting the middle term​

Answers

Answered by BrainlyPopularman
12

GIVEN :

A quadratic equation 9x² - 155x - 500 = 0

TO FIND :

Find 'x' ( Using Splitting Middle term )

SOLUTION :

 \\  \implies{ \bold{9 {x}^{2}  - 155x - 500 = 0}} \\

• Now Splitting Middle term –

 \\  \implies{ \bold{ 9{x}^{2}  {\underbrace{- 180x  + 25x}}- 500 = 0}} \\

 \\  \implies{ \bold{ 9x(x  - 20)  + 25(x- 20) = 0}} \\

 \\  \implies{ \bold{ (9x + 25)(x  - 20)= 0}} \\

• So that –

 \\  \implies{ \bold{ x - 20= 0}} \\

 \\  \implies \large{ \boxed{ \bold{ x = 20}}} \\

• And –

 \\  \implies{ \bold{ 9x + 25= 0}} \\

 \\  \implies{ \bold{ 9x  =  -  25}} \\

 \\  \implies \large{ \boxed{ \bold{ x  =  -  \dfrac{ 25}{9}}}} \\

• Hence ,   \:  \: { \bold{ x  = 20\:,\: \left( -  \dfrac{ 25}{9} \right) }} \:  \:

Answered by MaIeficent
25

Step-by-step explanation:

{\red{\underline{\underline{\red{Given:-}}}}}

  • 9x² - 155x - 500

{\blue{\underline{\underline{\bold{To\: Find}}}}}

  • The value of 'x' by splitting the middle terms

{\green{\underline{\underline{\bold{Solution:-}}}}}

9 {x}^{2}  - 155x - 500 \\  \\  \implies9 {x}^{2}  - 180x + 25x - 500 \\  \\  \implies9x(x - 20) + 25(x - 20) \\  \\  \implies(9x + 25)(x - 20)\\ \\ \implies(9x + 25) = 0 \:  \:  \: (or) \:  \:  \: (x - 20) = 0

____________

9x + 25 = 0 \\  \\ \implies 9x =  - 25 \\  \\  \implies x =  \frac{ - 25}{9}

_____________

x - 20 = 0 \\  \\  \implies x = 20

{\pink{\underline{\underline{\bold{Verification}}}}}

Case 1:-

Substitute x = 20 in ( 9x² - 155x - 500 )

9 {(20})^{2}  - 155(20) - 500 = 0 \\  \\  \implies9(400) - 3100 - 500 = 0 \\  \\  \implies3600 - 3100 - 500 = 0 \\  \\  \implies500 - 500 = 0 \\  \\ \implies0 = 0

L.H.S = R.H.S

Hence, proved

Therefore,

\boxed{x = \frac{-25}{9} , \: 20}

Similar questions