Solve 9x2-9(a+b)x+(2a2+5ab+2b2)=0 by factorisation
Answers
Answered by
7
Solve 9x2-9(a+b)x+(2a2+5ab+2b2)=0 by factorisation
Consider, 9x2-9(a+b)x+(2a2+5ab+2b2)=0
9x2 - 9(a + b)x + (2a2 + 4ab + ab + 2b2) = 0
9x2 - 9(a + b)x + [2a(a + 2b) + b(a + 2b)] = 0
9x2 - 9(a + b)x + [(a + 2b)(2a + b)] = 0
9x2 – 3[(a + 2b) + (2a + b)]x + [(a + 2b)(2a + b)] = 0
9x2 – 3(a + 2b)x - 3(2a + b)x + [(a + 2b)(2a + b)] = 0
3x[3x – (a + 2b)] - (2a + b)[3x + (a – 2b)] = 0
[3x – (a + 2b)][3x - (2a + b)] = 0
[3x – (a + 2b)] = 0 or [3x - (2a + b)] = 0
3x = (a + 2b) or 3x = (2a + b)
hope it helps
x = (a + 2b)/3 or x = (2a + b)/3
Consider, 9x2-9(a+b)x+(2a2+5ab+2b2)=0
9x2 - 9(a + b)x + (2a2 + 4ab + ab + 2b2) = 0
9x2 - 9(a + b)x + [2a(a + 2b) + b(a + 2b)] = 0
9x2 - 9(a + b)x + [(a + 2b)(2a + b)] = 0
9x2 – 3[(a + 2b) + (2a + b)]x + [(a + 2b)(2a + b)] = 0
9x2 – 3(a + 2b)x - 3(2a + b)x + [(a + 2b)(2a + b)] = 0
3x[3x – (a + 2b)] - (2a + b)[3x + (a – 2b)] = 0
[3x – (a + 2b)][3x - (2a + b)] = 0
[3x – (a + 2b)] = 0 or [3x - (2a + b)] = 0
3x = (a + 2b) or 3x = (2a + b)
hope it helps
x = (a + 2b)/3 or x = (2a + b)/3
Answered by
9
Here we have,
9x² - 9(a + b)x + (2a² + 5ab + 2b²) = 0
So,
= 2a² + 5ab + 2b² (This is a constant term)
Splitting middle term :-
= 2a² + 4ab + ab + 2b²
= 2a(a + 2b) + b(a + 2b)
= (a + 2b) (2a + b)
Now,
Coefficient of middle term
= -9(a + b)
= -3[(2a + b) + (a + 2b)]
So,
9x² - 9(a + b)x + (2a² + 5ab + 2b²) = 0
9x² - 3[(2a + b) + (a + 2b)]x + (2a + b) (a + 2b) = 0
9x² - 3(2a + b)x - 3(a + 2b)x + (2a + b) (a + 2b) = 0
3x[3x - (2a + b) - (a + 2b)][3x - (2a + b)] = 0
[3x - (2a + b)][3x - (a + 2b)] = 0
[3x - (2a + b)] = 0
x = 2a + b/3
[3x - (a + 2b)] = 0
x = a + 2b/3
Similar questions