Math, asked by mohithchowdary57, 2 months ago

solve (a^_1+b^_1)^_1=ab/a+b​

Answers

Answered by rishu6845
2

  \large{ \bold{\pink{LHS }}}=  {( {a}^{ - 1}  +  {b}^{ - 1}) }^{ - 1}  \\  =  { (\dfrac{1}{a} +  \dfrac{1}{b}  )}^{ - 1}  \\  =  { ( \:  \: \dfrac{b + a}{ab}  \:  \: )}^{ - 1}  \\  =  {( \: \dfrac{ab}{b + a}) \: }  ^{  + 1}  \\  =  \dfrac{ab}{a + b}  =  \pink{ \bold{ \large{RHS}}}

 \red{ \bold {\large{ \underline{ \underline{Formula \: used}}}}}  \pink{ \bold{\longrightarrow}} \\  \bold{ \blue{1.  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{ \bold{{a}^{ - n}  =  \dfrac{1}{ {a}^{n}}}}}}}

Similar questions