Math, asked by bkjyoti10, 19 days ago

solve : (a^2 - b^2) / a-b

Answers

Answered by niteshrajputs995
0
  • As per the data given in the question, we have to find the given expression.

            Given data:- \frac{a^{2}-b^{2}  }{a-b} .  

            To find:- \frac{a^{2}-b^{2}  }{a-b} =?

            Solution:-

  • a^{2} -b^{2} is an algebraic identity.
  • here we know that the algebraic equation a^{2} -b^{2}=(a+b)(a-b).
  • we will expand the algebraic equation so we get,

                =\frac{(a+b)(a-b)}{a-b} \\=a+b.

      Hence \frac{a^{2}-b^{2}  }{a-b} is equal to a+b.

Answered by junaida8080
0

Answer:

\frac{a^{2}-b^{2}}{a-b}=a+b

Step-by-step explanation:

Given \frac{a^{2}-b^{2}}{a-b}.

We know the formula a^{2}-b^{2}=(a-b)(a+b)

Substituting the formula in the given equation,

=\frac{(a-b)(a+b)}{a-b}

Cancel the term a-b in the numerator and the denominator, we get

=a+b.

Similar questions