Math, asked by aadyatripathi1102, 1 month ago

solve a^a-b x a^b-a x b^a-b x b^b-a

Answers

Answered by srushtiushan
2

Step-by-step explanation:

I hope it's help you

please mark me as a brainleast

Attachments:
Answered by MrImpeccable
21

ANSWER:

To Solve:

\:\:\:\bullet\:\:\: a^{a-b}\times a^{b-a} \times b^{a-b}\times b^{b-a}

Solution:

We need to solve,

\implies a^{a-b}\times a^{b-a} \times b^{a-b}\times b^{b-a}

\implies a^{a-b}\times a^{-(a-b)} \times b^{a-b}\times b^{-(a-b)}

We know that,

\hookrightarrow x^{-y} = \dfrac{1}{x^y}

So,

\implies a^{a-b}\times a^{-(a-b)} \times b^{a-b}\times b^{-(a-b)}

\implies a^{a-b}\times \dfrac{1}{a^{a-b}} \times b^{a-b}\times \dfrac{1}{b^{a-b}}

\implies \dfrac{ a^{a-b} }{a^{a-b}} \times \dfrac{ b^{a-b} }{b^{a-b}}

On cancelling the terms,

\implies 1 \times 1

Hence,

\implies 1

Therefore,

\implies\bf a^{a-b}\times a^{b-a} \times b^{a-b}\times b^{b-a} = 1

Formula Used:

  • x^-y = 1/x^y
Similar questions