Math, asked by rimsaha123pbbvnx, 1 year ago

Solve:a/ax-1 + b/bx-1=a+b

Answers

Answered by QGP
18
\frac{a}{ax-1}+\frac{b}{bx-1} = a+b \\ \\ \\ \implies \frac{a}{ax-1}-b = a - \frac{b}{bx-1} \\ \\ \\ \implies \frac{a-b(ax-1)}{ax-1} = \frac{a(bx-1)-b}{bx-1} \\ \\ \\ \implies \frac{a-abx+b}{ax-1}=\frac{abx-a-b}{bx-1} \\ \\ \\ \implies \frac{a+b-abx}{ax-1} = \frac{-(a+b-abx)}{bx-1} \\ \\ \\ \implies a+b-abx=0 \text{ is a possible solution} \\ \\ \\ \implies \frac{\cancel{a+b-abx}}{ax-1} = \frac{-\cancel{a+b-abx}}{bx-1} \\ \\ \\ \implies \frac{1}{ax-1} = -\frac{1}{bx-1} \\ \\ \\ \implies bx-1 = -(ax-1)


\implies bx-1 = -ax+1 \\ \\ \\ \implies bx+ax=2 \\ \\ \\ \implies (a+b)x=2 \\ \\ \\ \implies \boxed{\bold{x=\frac{2}{a+b}}}

Also, as mentioned above, a+b-abx=0 is also a solution.

a+b-abx=0 \\ \\ \\ \implies abx=a+b \\ \\ \\ \implies \boxed{\bold{x=\frac{a+b}{ab}}}



Thus, The Solutions are:



\bold{x = \frac{a+b}{ab}} \quad and \quad \bold{x = \frac{2}{a+b}}




rimsaha123pbbvnx: Thanks a lottt..
Answered by Anonymous
15
Given Expression :
 \frac{a}{ax - 1}  - \frac{b}{bx - 1}  = a + b
To Find :

The required solutions.


Solution :

Refer to the above Attachments !!

The required solutions :


1) => x =
 \frac{2}{a + b}

2) => x =
 \frac{a + b}{ab}
#Be Brainly !!
Attachments:
Similar questions