Math, asked by raizadaaastha17, 1 month ago

solve
a)xcosx cosy + Siny dy/do = 0
b) dy/dx = sin(x+y)

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{dy}{dx}  =  \sin(x + y)  \\

Let \: x + y = v \\  \implies1 +  \frac{dy}{dx}  =  \frac{dv}{dx}

Now,

 \frac{dv}{dx}  - 1 =  \sin(v)  \\

 \implies \frac{dv}{dx}   =1 +   \sin(v)  \\

 \implies \frac{dv}{1 +  \sin(v) }   = dx \\

 \implies \int \frac{dv}{1 +  \sin(v) }   =  \int \: dx \\

 \implies \int \frac{(1 -  \sin(v) )dv}{1  -  \sin^{2} (v) }   =  \int \: dx \\

 \implies \int \frac{(1 -  \sin(v) )dv}{ \cos^{2} (v) }   =  \int \: dx \\

 \implies \int \frac{dv}{ \cos^{2} (v) }   -  \int \frac{ \sin(v)dv }{ \cos^{2} (v) }  =  \int \: dx \\

 \implies \int \sec^{2} (v)dv   -  \int  \tan(v)\sec (v)dv  =  \int \: dx \\

 \implies \tan (v)  - \sec (v)= x + C \\

 \tan(x + y)  -  \sec(x + y)  = x +C \\

Similar questions