Math, asked by ItZTanisha, 1 month ago

Solve above question​

Attachments:

Answers

Answered by Anonymous
3

Question 23 ) Solution Given Below⬇

f(x) = ax {}^{2}  + bx + c \\

:⟼ Find

 \frac{1}{ \alpha }  -  \frac{1}{ \beta }  =  {?}^{}

______________________________________

Required Solution ⬇

 \alpha , \beta \:  are \: the \: roots \: of \: f(x)

 {\bold{\green{\underline{\underline{We  \: Know  \: that...}}}}}

\;\large{\boxed{\bf{\pink{ \alpha  +  \beta  =  \frac{ - b}{a} }}}} \: for \: f(x)

\;\large{\boxed{\bf{\pink{ \alpha  \beta  =  \frac{c}{a} }}}} \: for \: f(x)

 \frac{1}{ \alpha }  -  \frac{1}{ \beta }  \\ ⇒ \frac{( \beta  -  \alpha )}{ \alpha  \beta } \\

\sf\purple{ \: ( \beta  -  \alpha ) =  {}^{}  {?}^{} }

( \beta  -  \alpha ) {}^{2}  = ( \beta  +  \alpha ) {}^{2}  - 4 \beta  \alpha  \\ ⇒( \frac{ - b}{a} ) {}^{2}  - 4( \frac{c}{a} ) \\ ⇒( \beta  -  \alpha ) {}^{2} =  \frac{b {}^{2} }{a {}^{2} }  -  \frac{4c}{a}  \\   \\⇒ ( \beta  -  \alpha ) { }^{2}  =  \frac{b {}^{2} - 4ac }{a {}^{2} }  \\ ⇒( \beta  -  \alpha )  =   \frac{ \sqrt{b {}^{2} - 4ac } }{a {}^{2} }  \\ ( \beta  -   \alpha ) = \;\large{\boxed{\bf{\red{\frac{ \sqrt{b {}^{2} - 4ac } }{a {}^{2} }}}}} -  - (i)

_______________________________________

 \frac{1}{ \alpha }   -   \frac{1}{ \beta }  =  \frac{ \beta  -  \alpha }{ \alpha  \beta }

 {\bold{\pink{\underline{\underline{using \: eq(i) \: we \: get \: ....}}}}}

⇒ \frac{ \frac{ \sqrt{b {}^{2} - 4ac } }{a} }{ \frac{c}{a} }  \\

⇒ \frac{( \sqrt{b {}^{2}  - 4ac) \times \sf\red{a} } }{ \sf\red{a}\times  c}

\sf\colorbox{red}{required \: answer }

\;\large{\boxed{\bf{\green{ \frac{1}{ \alpha } -  \frac{1}{ \beta }   =  \frac{ \sqrt{b { }^{2}  - 4ac} }{c} }}}}

 \sf\blue{hope \: this \: helps \: you!! \: }

@Mahor2111

__________◆◇◆◇◆◇◆◇_______________

Answered by utsukprittt
1

Answer:

achha majak tha

aisa link v koi dalta h kya ...(⊙_◎)

Similar questions