Math, asked by ItZTanisha, 3 months ago

Solve above question plz​

Attachments:

Answers

Answered by ItzArchimedes
31

\rule{200}4

\dagger \;\underline{\underline{\purple{\small\rm We\;Need\;To \;Prove :-}}}

  • \small\sf \dfrac{tan^2\theta}{tan^2\theta-1}+\dfrac{cosec^2\theta}{sec^2\theta-cosec^2\theta}=\dfrac{1}{sin^2\theta-cos^2\theta}

\dagger \;\underline{\underline{\purple{\small\rm Taking\;LHS :-}}}

Substituting ,

\small\sf tan^2\theta = \dfrac{sin^2\theta}{cos^2\theta}

\small\sf cosec^2\theta = \dfrac{1}{sin^2\theta}

\small\sf sec^2\theta =\dfrac{1}{cos^2\theta}

\dashrightarrow\sf \small\dfrac{\frac{sin^2\theta}{\cancel{cos^2\theta}}}{\frac{sin^2\theta-cos^2\theta}{\cancel{cos^2\theta}}}+\dfrac{\frac{1}{\cancel{sin^2\theta}}}{\frac{sin^2\theta-cos^2\theta}{\cancel{sin^2\theta} cos^2\theta}}

\dashrightarrow\sf \small \dfrac{sin^2\theta}{sin^2\theta-cos^2\theta}+\dfrac{cos^2\theta}{sin^2\theta-cos^2\theta}

\dashrightarrow\sf \small \dfrac{sin^2\theta+cos^2\theta}{sin^2\theta-cos^2\theta}

\dashrightarrow \boxed{\red{\sf \small \dfrac{1}{sin^2\theta-cos^2\theta}}}

\textbf{\textsf{\pink{Hence proved}}}\green{\boldsymbol\checkmark}

It can also be simplified

\small\sf \dfrac{1}{sin^2\theta-cos^2\theta}

Taking minus (-) common,

\small \sf\dfrac{1}{-\big(cos^2\theta-sin^2\theta\big)}

\small\sf \dfrac{1}{-\big(cos2\theta\big)}

\small\sf -sec2\theta

\rule{200}4

Answered by Thatsomeone
14

 \tt \frac{{tan}^{2}\theta}{{tan}^{2}\theta - 1 } + \frac{{cosec}^{2}\theta}{{sec}^{2}\theta - {cosec}^{2}\theta} = \frac{1}{{sin}^{2}\theta - {cos}^{2}\theta}\\ \\ \tt L.H.S \\ \\ \tt \frac{{tan}^{2}\theta}{{tan}^{2}\theta - 1 } + \frac{{cosec}^{2}\theta}{{sec}^{2}\theta - {cosec}^{2}\theta}\\ \\ \tt converting\:the\:ratios\:in\:sine\:or\:cosine\:we\:get \\ \\ \tt \frac{\frac{{sin}^{2}\theta}{{cos}^{2}\theta}}{\frac{{sin}^{2}\theta}{{cos}^{2}\theta} - 1 } + \frac{\frac{1}{{sin}^{2}\theta}}{\frac{1}{{cos}^{2}\theta} - \frac{1}{{sin}^{2}\theta}} \\ \\ \tt  \frac{\frac{{sin}^{2}\theta}{{cos}^{2}\theta}}{\frac{{sin}^{2}\theta-{cos}^{2}\theta}{{cos}^{2}\theta}} + \frac{\frac{1}{{sin}^{2}\theta}}{\frac{{sin}^{2}\theta -{cos}^{2}\theta}{{cos}^{2}\theta.{sin}^{2}\theta}}\\ \\ \tt  \frac{\frac{{sin}^{2}\theta}{\cancel{{cos}^{2}\theta}}}{\frac{{sin}^{2}\theta-{cos}^{2}\theta}{\cancel{{cos}^{2}\theta}}} + \frac{\frac{1}{\cancel{{sin}^{2}\theta}}}{\frac{{sin}^{2}\theta -{cos}^{2}\theta}{{cos}^{2}\theta.\cancel{{sin}^{2}\theta}}}\\ \\ \tt \frac{{sin}^{2}\theta}{{sin}^{2}\theta - {cos}^{2}\theta} + \frac{{cos}^{2}\theta}{{sin}^{2}\theta - {cos}^{2}\theta} \\ \\ \tt \frac{{sin}^{2}\theta +{cos}^{2}\theta}{{sin}^{2}\theta -{cos}^{2}\theta}\\ \\ \boxed{\underline{\red{\tt IDENTITY : {sin}^{2}\theta +{cos}^{2}\theta = 1 }}}  \\ \\ \tt \frac{1}{{sin}^{2}\theta - {cos}^{2}\theta} \\ \\ \tt R.H.S \\ \\ \boxed{\underline{\red{\tt Hence\:proved}}} \\ \\ \green{\tt NOTE : If\:you\:are\: getting\:problem\:with\:this\:type\:of\: question\:just }\\ \green{\tt  convert\:it\:into\:sine\:or\:cosine\:ratios}

Hope it helps you

THANKS


ItzArchimedes: Well done !!
Similar questions