Math, asked by rupeshromeo3, 1 year ago

solve and answer it exactly.

√(1+tan²C)​

Answers

Answered by jitumahi435
1

We need to recall the following trigonometric formula.

  • 1+tan^2x=sec^2x

This problem is about the trigonometric formula.

Given:

\sqrt{(1+tan^2C)}

Using the above trigonometric formula, we get

\sqrt{(1+tan^2C)}=\sqrt{sec^2C}

                      =sec(C)

Thus, \sqrt{(1+tan^2C)}=secC

Answered by AneesKakar
3

The value of the given expression √(1 + tan²C) is equal to sec(C).

Given:

The expression is √(1 + tan²C).

To Find:

The value of the given expression.

Solution:

→ The tan function is the ratio of perpendicular and base whereas the sec function is the ratio of hypotenuse and base.

              \boldsymbol{\therefore tanA=\frac{Perpendicular}{Base} }\:\:\:\boldsymbol{and\:\:\:\:secA=\frac{Hypotenuse}{Base} }

→ Therefore tanC would be equal to the ratio of Perpendicular and Base.

                                  \therefore \sqrt{1+tan^{2}C } \\\\= \sqrt{1+(\frac{Perpendicular}{Base} )^{2} }\\\\=\sqrt{(\frac{(Base)^{2} +(Perpendicular)^{2} }{(Base)^{2} } )}

→ We know by Pythagoras's Theorem:

                    (Hypotenuse)² = (Base)² + (Perpendicular)²

The given expression simplifies to:

                                 =\sqrt{(\frac{(Base)^{2} +(Perpendicular)^{2} }{(Base)^{2} } )}\\\\=\sqrt{(\frac{(Hypotenuse)^{2} }{(Base)^{2} } )}\\\\=\sqrt{(\frac{Hypotenuse}{Base} )^{2} } \\\\=\frac{Hypotenuse}{Base} \\\\=sec(C)

Therefore the value of the given expression √(1 + tan²C) comes out to be equal to sec(C).

#SPJ2

Similar questions