Math, asked by mukulsaini28604, 1 month ago

solve and check 3y+2 (y+2) = 13- (2y-5)​

Answers

Answered by raginikumari37316
1

Answer:

Reorder the terms:

3y + 2(2 + y) = 13 + -1(2y + -5)

3y + (2 * 2 + y * 2) = 13 + -1(2y + -5)

3y + (4 + 2y) = 13 + -1(2y + -5)

Reorder the terms:

4 + 3y + 2y = 13 + -1(2y + -5)

Combine like terms: 3y + 2y = 5y

4 + 5y = 13 + -1(2y + -5)

Reorder the terms:

4 + 5y = 13 + -1(-5 + 2y)

4 + 5y = 13 + (-5 * -1 + 2y * -1)

4 + 5y = 13 + (5 + -2y)

Combine like terms: 13 + 5 = 18

4 + 5y = 18 + -2y

Solving

4 + 5y = 18 + -2y

Answered by Anonymous
26

Answer:

  • The value of y is 2.

Step-by-step explanation:

Given,

  •  \tt 3y + 2(y + 2) = 13 - (2y - 5) \\

To Find,

  • The value of y. (Solve and check)

Solution,

:\implies  \tt 3y + 2(y + 2) = 13 - (2y - 5) \\ \\  :\implies \tt 3y + 2y + 4 = 13 - 2y + 5 \\  \\ :\implies \tt 5y + 4 = 18 - 2y \\  \\ :\implies \tt 5y + 2y = 18 - 4 \\  \\ :\implies \tt 7y = 14 \\  \\ :\implies \color{red} \boxed{ \tt  y = 2}

Verification,

:\implies  \tt 3y + 2(y + 2) = 13 - (2y - 5) \\  \\ :\implies \tt 3(2) + 2(2 + 2) = 13 - (2(2) - 5) \\  \\ :\implies \tt 6 + 2(4) = 13 - (4 - 5) \\  \\ :\implies \tt 6 + 8 = 13 - ( - 1) \\  \\ :\implies \tt 14 = 13 + 1 \\  \\ :\implies \tt 14 = 14 \\  \\ :\implies \tt LHS  = RHS

Required Answer,

  • The value of y is 2.
Similar questions