Math, asked by BloomingBud, 1 year ago

Solve and check the equations
(a) 1 - 4x = -11
(b) y + 3/2 = 5

Class - IV

Linear Equations

Answers

Answered by SmallMiniDoraemon
7

SOLUTION :


(a) 1 - 4x = -11



⇒ -4x + 1 - 1 = -11 - 1  [ Adding -1 to both sides ]

⇒ -4x = -12

\frac{-4x}{ \bf{4} } = \frac{-12}{ \bf{4} }

⇒ -x = -3

⇒ x = 3     [ As minus(-) divided by minus(-) is plus(+) ]

x = 3 is the solution of the given equation [ 1 - 4x = -11 ]


VERIFICATION

LHS = 1 - 4x

       = 1 - 4 × 3     [ Put the value of x = 3 ]

       = 1 - 12

       = -11 = RHS

∴ Hence LHS = RHS (verified)


________________________________


(b) y + 3/2 = 5


⇒ y + \frac{3}{2} - \frac{ \bf{3} }{ \bf{2} } = 5 - \frac{ \bf{3} }{ \bf{2} }    [ Adding - \frac{ \bf{3} }{ \bf{2} } to both sides ]

⇒ y = \frac{ 10 - 3 }{2 }    [ Taking 2 as LCM in RHS ]

⇒ y = \frac{ \bf{7} }{ \bf{2} }

y = \frac{ \bf{7} }{ \bf{2} } is the solution is the solution of the given equation [ y + 3/2 = 5  ]


VERIFICATION

LHS = y + 3/2

       =  \frac{ \bf{7} }{ \bf{2} } +  \frac{ \bf{3} }{ \bf{2} }    [ Put the value of y =  \frac{ \bf{7} }{ \bf{2} } ]

       =  \frac{ \bf{10} }{ \bf{2} }

       = 5 = RHS

∴ Hence LHS = RHS (verified)


________________________________

Answered by anmolbhasin2004
2

Answer:

(a) -4x = -11 - 1

(1 goes to RHS and sign changes)

-4x=-12

(both - signs get cut )

4x=12

x=12/4

x=3

(b)y = 5 - 3/2

(3/2 goes to RHS and sign changes) LCM =2

y= 5*2/2 - 3/2

y=7/2

Step-by-step explanation:


Similar questions